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1.0 Program Obj_,'tives and Approach

The primary goal of this research is to develop a solid-state high definition television

(HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels per

frame. This imager offers an order of magnitude improvement in speed over CCD designs

and will allow for monolithic imagers operating from the IR to the UV.

The technical approach of the project focuses on the development of the three basic

components of the imager and their integration. The imager chip can be divided into three

distinct components: 1) image capture via an array of avalanche photodiodes (APDs), 2)

charge collection, storage and overflow control via a charge transfer transistor device (CTD)

and 3) charge readout via an array of acoustic charge transport (ACT) channels. The use of

APDs allows for front end gain at low noise and low operating voltages while the ACT

readout enables concomitant high speed and high charge transfer efficiency. Currently work

is progressing towards the development of manufacturable designs for each of these

component devices.

In addition to the development of each of the three distinct components, work towards

their integration is also progressing. The component designs are considered not only to meet

individual specifications but to provide overall system level performance suitable for HDTV

operation upon integration. The ultimate manufacturability and reliability of the chip

constrains the design as well.

The progress made during this period is described in detail in Sections 2-4.
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2.0 Heterojunction Acoustic Charge Transport (HACT) Device

In this section of the report we describe the progress made in the development of the

ACT component of the imager chip. In general, this includes:

1) The development and experimental investigation of new HACT architectures and

the establishment of a Region of Operation curve, further, comprehensive.

2) The completion of a comprehensive study of the piezoelectric thin film ZnO on

GaAs-based materials for HACT applications.

3) Initial studies into acoustoelectic amplifiers which are expected to drastically

reduce the power budget for ACT devices.

4) Advances in ACT device modeling which allow us to simulate device performance

in any of the competing ACT architectures.

2.1 New HACT Architectures and Established Region of Operation

This section presents a physically-based analytic model for charge injection and

transport in HACT devices. Previous models have utilized numerical solutions of the coupled

Poisson and current continuity equations [2.1.1-2.1.3]. This work, which was initially

presented in [2.1.4], is the first physically-based analytic description of the charge injection

process for ACT devices. Analytic models for charge transport in buried channel ACT

devices were investigated by Hoskins, et al. [2.2.5]. This work extends this by refining some

of the assumptions made by Hoskins, and by applying his approach to HACT devices. In the

derivation of this model, bounds on different material parameters are developed that define the
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rangeunderwhich acousticchargetransportmay occur. This model is verified

experimentally. Becausethe conditionsfor chargetransportmust exist beforeinjection can

occur, this is treatedfirst. Expressionsfor theequilibrium andnonequilibriumcarrier

concentrationarethendeveloped. From this, anexpressionfor the instantaneouschannel

currentis thenderived. The actualshapeof the injection aperturehasbeenthe subjectof

somecontroversy [2.1.6], [2.1.7], [2.1.1], [2.1.8]. It is found andverified experimentallythat

the shapeis approximatelyGaussian.

beendebated[2.1.6], [2.1.1], [2.1.8].

The form of the steady-statechannelcurrenthasalso

It is shownthat the steady-statechannelcurrenthasan

exponentialdependenceon gatevoltage.

The resultingmodelscanbeusedto predictboth the steady-stateandtransient

characteristicsof a HACT deviceof a particulargeometryandmaterialarchitecture. Being

physically-based,generalizationsaboutHACT deviceoperationandtrade-offs in deviceand

materialdesigncanbemade.Lastly, the model lendsitself to a simple implementationon

commerciallyavailablecircuit analysissoftware.

2.1.1 An Analytic Theory of Charge Transport in HACT Devices

Hoskins and Hunsinger developed the first analytic theory of charge transport in ACT

devices in [2.1.5]. This theory describes the transport of charge by the acoustically induced

potential wave as a potential screening problem. In this section, this theory is extended and

applied to heterostructure ACT devices. Different material constraints are identified, and their

impact on the transport process is quantified. The model is also experimentally verified.

.



Figure 2.1.1
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2.1.1.1 The HACT Potential Screening Problem.

Acoustic charge transport is essentially a process whereby mobile electrons screen

disturbances in the fixed charge concentration created by the motion of the SAW wave in the

piezoelectric semiconductor [2.1.6]. Generally, this process is solved under the assumption of

a stationary potential well, since the period of the SAW is much greater than the dielectric

relaxation time of the medium [2.1.5]. The statement of the problem is then as follows: Given

an acoustically- induced charge disturbance which is assumed stationary and superimposed on

a background of fixed charge, determine the equilibrium free carrier concentration which screens

this charge and the distance over which it is distributed.

This problem is illustrated in Figure 2.1.1, which also shows the effects of the various

layers in a typical HACT material structure. The primary purpose of the heterostructure is to

confine mobile charge in the vertical direction [2.1.7]. A cap layer is used to control the effects

of surface states on the conduction band in this vertical direction. Beneath this, is the charge

control layer, which acts to form the upper potential barrier. Two alternatives have been

proposed for this layer. Tanski, et al. proposed an AI.3GaTAs layer which creates a potential

discontinuity of approximately 0.25 eV in the conduction band [2.1.7]. Grudkowski, et al. later

proposed a p-doped GaAs layer to create a barrier from the built-in potential of the depletion

region [2.1.9]. Smith, et al. have also investigated this structure [2.1.10]. Ideally, the transport

layer is the region where most of the mobile charge is confined. Beneath this, the barrier layer

defines the lower region of charge confinement. A buffer layer is sometimes employed to

minimize growth defects in the upper layers.
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Thepotentialto bescreenedis dueto thesuperpositionof thebackgrounddonors and the

polarization charge induced by the acoustic wave. The amplitude of the surface potential due

to the acoustic wave, _.,0, is related to the voltage, Vtr, applied to a transducer by

_Jo = 2_] _r2NVtr (2.1.1)

where _q is a parameter dependent on the metalization ratio (---0.8 for equal gap and width size),

is the electromechanical conversion efficiency (-0.7 typical), _ is the piezoelectric coupling

constant (=0.0007 for GaAs) and N is the number of finger pairs in the IDT [2.1.11]. The factor

of two arises because the use of a reflector is assumed, which doubles the amplitude of the SAW.

A common approximation assumes that the acoustic wave emanating from the IDT is an infinite

plane wave in the transverse direction [2.1.12]. As a result of this approximation, the variation

of the potential in the direction perpendicular to the transport direction is assumed to be zero.

A similar, but somewhat cruder approximation is made with regard to the potential variation into

the substrate. The amplitude of the potential induced by a SAW on an electrically open surface

is shown to fall off approximately exponentially with the acoustic wavelength into the substrate

[2.1.11 ]. However, because the transport channel layer is usually a small fraction of an acoustic

wavelength, the variation in potential in this direction can be neglected. Furthermore, the depth

of the channel is generally small enough that the potential at the transport depth is essentially the

same as at the surface, as given by equation (2.1.1). The SAW can therefore be expressed by

an effective charge concentration, Nso, related to the SAW potential by the one-dimensional

Poisson's equation



(2.1.2)

where _,a is the acoustic wavelength, and N, o = 4n2_._EJq_ 2 is the peak polarization charge

concentration, with q being the charge on an electron, and e, the permittivity of the material.

The equilibrium electron concentration can be accurately obtained by self consistently

solving the Poisson equation coupled to the Boltzmann distribution using numerical methods

[2.1.13]. This has been done by a number of authors [2.1.1-2.1.3, 2.1.10]. However, insight into

the physics of the device can also be gained by analyzing the asymptotic solutions of the

nonlinear ordinary differential equation derived from directly substituting the Maxwell-Boltzmann

distribution in Poisson's equation [2.1.14]. The free electron concentration, n, can be expressed

as a function of the conduction band potential _(x) = Ec(x)/q, where E< is the conduction band

energy relative to the degeneracy level,

n(x) = Nc e-'_'*('_)_
(2.1.3)

where k is Boltzmann's constant, T is the absolute temperature, and N c is the density of states in

the conduction band. Assuming a transport layer doping, No<h, and neglecting any bandgap

narrowing effects, equation (2.1.3) can be substituted in Poisson's equation, to yield

where p is the charge density in the region of interest, equation (2.1.4) is a nonlinear ordinary

differential equation that is not easily solved by analytic methods. To quantify the potential, and

7
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hence the concentration throughout the transport channel, the domain over which equation (2.1.4)

is solved is broken up into two distinct regions. Over regions where there is no gradient in

potential (i.e. the "flat band" condition), equation (2.1.4) reduces to an algebraic expression, and

the region is said to be quasi-neutral. This implies perfect screening of the SAW potential and

donor ions by the free electrons. Hence,

(2.{.5)

This implies that the potential within the charge packet is

q I (2.1.6)
Noc h + Nsoeos[ 2nx

where x o defines the charge packet boundary. Hoskins, et al. arrived at the above result, but

assumed that the potential outside the packet boundary was equal to the SAW potential [2.1.5].

This is true only for very low doped channels. Schmuckler later developed an empirical model

for the problem of barrier lowering by the packet charge [2.1.15]. This work extends the

previous work of others by developing a physically-based expression for the potential outside the

charge packet by assuming that the depletion approximation holds whereby n is assumed

negligible compared to the doping and polarization charge. In this case, the linear Poisson

equation



d: Z,
(2.1.7)

can be easily solved to arrive at an analytic expression for the potential.

accomplished by direct integration, yielding

This can be

1_ + dp_Xx_ 2 nXl +A (x _xo) +B*(x)--i N_hCx-x°)2 " _,X, )
x o < x < Xo/2 (2.1.8)

where A and B are constants of integration. These are evaluated by requiring continuity of the

potential function and its derivative at xo. In doing so,

A ._.

q

x°

(2.1.9)

The only parameter left to determine to complete the approximate analytic solution to the

potential is the length of the packet boundary Xo. Hoskins, et al. obtained a simple form of this

screening length by assuming that the concentration drops to zero outside the region where the

sum of the SAW potential and the ionized dopant potential goes negative [2.1.5]. Hoskins' model

therefore assumes that charge can be screened, and hence transported in an undoped channel.

In HACT devices, it has been experimentally determined that this is not the case. This will be

.



discussed in Section 2.1.3. A physical basis for this can be derived from Hutson and White's

theory of acoustoelectric attenuators and amplifiers: Charge screening in HACT devices occurs

only in regions where the spatial variation of the SA W potential is small on a Debye length scale

within the channel [2.1.16], [2.1.17]. Thus, when the Debye length becomes an appreciable

fraction of the acoustic wavelength, the polarization charge is not effectively screened by the free

electrons in the channel. This forms a basis to determine x o. Debye length is a function of free

carrier concentration and is defined by the length over which a small (<<kT/q) perturbation from

the flat band potential decays to lie of the initial value [2.1.14]. This results from the Taylor

expansion of the exponential term in equation (2.1.3), and is not really appropriate for a large

potential deviation. Considering this, a function, Lo(x), termed the "quasi-Debye length," can be

developed by substituting the packet concentration for the carrier concentration in the normal

Debye length expression:

LD(X ) = _ .

q2 N_ h + N, oCOs

(2.1.10)

The screening length x o is defined by the condition Lo(x o) = Loo, where Loo is an empirical

parameter expected to be a small fraction of the acoustic wavelength Xa. In doing this, the

screening length is given by

10
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XO= Re _ q2L_o__..__Ns0 NwJ (2.1.11)

Figure 2.1.2 shows the predicted screening length (i.e. the length of the charge packet) versus

SAW potential and channel doping for the material design presented in [2.1.10]. It is seen that

there are local regions where the screening length is zero, indicating the charge transport will not

occur. For this material design, the SAW potential threshold for charge transport to occur is on

the order of 0.25 V in low doped channels.

2.1.1.2 Material Constraints and Operating Conditions for Efficient Transport.

Eqs. (2.6, 2.8, 2.9 and 2.11) form a complete analytic model for charge transport in HACT

devices. The determination of Loo must be done empirically. The accuracy of this model is

verified by comparing the predicted potential with that calculated by numerically solving equation

(2.1.3). This is shown in Figure 2.1.3. The Runge-Kutta method was used to solve equation

(2.1.3) over one half of an acoustic wavelength [2.1.18]. It is seen that the analytic theory is

close to that predicted by the numerical method. A value of Loo = _,J18 was found to give the

closest fit for lower doped channels, while Loo = )_J5 gave a better fit for higher doped channels.

It is also apparent that increasing the channel doping has two effects: increasing the well charge

capacity, and decreasing the potential barrier between wells. Obviously, when Noc h = Nso, the

well is essentially full. An approximate expression for the full well charge capacity is easily

derived by integrating equation (2.1.5) over the effective screening length given in equation

(2.1.1 I):

12
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(2.1.12)

where the charge outside the screening length is neglected, and the concentration is assumed

constant over the channel layer. The later assumption is only valid over the region where the

channel is quasi-neutral.

Hoskins, et al. pointed out that a trade-off must be made between the well capacity and

the diffusion induced transfer inefficiency [2.1.5]. The analytic model just developed provides

a convenient means to predict the barrier height, and hence the CTE. Taking the ban'ier height

as the difference between the potential minimum at x=0, and maximum at x=_,)2, the well barrier

height _w is given by

(2.1.13)

q +

A plot of the barrier height versus channel doping is shown in Figure 2.1.4 for several values of

SAW potential. Hoskins used thermionic emission theory to predict the charge loss per clock

cycle [2.1.5]. The results of his work indicate that barrier height of less than about 5kT may

result in a significant loss of charge in typical device architectures. Figure 2.1.4 also points out

several areas in which this theory improves upon models suggested in [2.1.5] and [2.1.6]. The

maximum barrier height is somewhat lower than that predicted by these authors because of the

inclusion of the effects of finite Debye length. For the same reason, the optimum channel doping

is not equal to the polarization charge amplitude as they suggested. The optimum channel doping

14
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would lie on a line passing through the peaks of the curves shown in Figure 2.1.4.

to be somewhat less than the polarization charge amplitude.

This is seen

2.1.2 Experimental Technique for Transport Model Verification

The model developed in the last section was verified to some extent by comparing the

predictions of the analytic expression to numerically derived results. However, to truly assess

the validity of the model, the predicted values of several parameters must be compared to those

obtained by measurements on actual devices. Basically, the transport model predicts the

conditions under which acoustic charge transport will occur in HACT devices. It will be shown

in this section that devices operating outside a range of SAW potential and equilibrium channel

concentration are not measurably functional, whereas those that fall within this range show

measurable ACT effects. Furthermore, equation (2.1.12) allows the prediction of charge capacity.

This will also be verified experimentally.

2.1.2.1 Test Setups and Procedures.

In order to verify that charge is being transported by the acoustic potential, two things

must occur: 1) Channel current must be present only when the SAW potential is applied, and

2) A transient signal imposed on the input must be delayed by the time it takes the acoustic wave

to traverse the channel. Figure 2.1.5 shows the setup used to measure both DC channel current

and frequency response. While DC channel current is relatively easy to verify, the signal delay

is sometimes not. Because of the low levels of the measured signal compared to spurious

feedthrough signals, the expected frequency response due to the NDS array is badly distorted.

However, it is possible to distinguish the acoustically delayed signal from the feedthrough signal

16
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Figure 2.1.5 Test setup used to measure DC channel current and frequency response.
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by performing a Fourier transform on the measured frequency response. This is shown in Figure

2.1.6. It is seen that the feedthrough signal is of much greater amplitude than the acoustically

delayed signal. However, if the output taps are spaced sufficiently far from the input gate, the

feedthrough signal decays to the point where the acoustically delayed signal is measurable.

Hence the ACT operation is verified.

2.1.2.2 Measurements and Results.

Figure 2.1.7 shows a summary of the performance of HACT devices fabricated at Georgia

Tech and United Technologies versus the equilibrium channel concentration and SAW potential.

This plot shows three different constrains on the channel concentration and SAW potential. Two

of these, the Polarization.Charge Limit and the Transport Limit are discussed in the section, while

the Injection Barrier Limit is discussed in Section 2.1.3. A lower limit on charge transport is

defined by the screening length, as given in equation (2.1.11), reducing to zero. Since this is

dependent on frequency, the three different curves represent the three different operating

frequencies of the different devices measured. Filled markers indicate device wafer lots in which

charge transport was verified, and empty markers designate nonfunctional devices. It is seen that

this limit is only relevant at low SAW potentials (< 8kT/q), and only for low channel dopings.

It is seen that the condition is automatically met if the conditions are met for Schottky injection,

which is discussed in the next section. Thus it was not possible to verify the lower boundary of

HACT operation using the injection structures of the test devices.

Verification of the full-well charge capacity given by equation (2.1.12) was done by

measuring the maximum channel current that the SAW can carry. Figure 2.1.8 shows the channel

current as a function of gate voltage for United Technologies HACT B-3. This will be discussed

18
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in greater detail in the next section. It is seen that the channel current abruptly stops increasing

as a function of gate voltage, indicating that the potential wells are at their peak capacity for the

operating SAW potential. Since the average channel current is simply the product of the packet

charge and the SAW frequency, the right axis is plotted in units of electrons per packet. It is

seen that the maximum capacity is close to that predicted by equation (2.1.12).

2.1.3 Development of the Injection Model

As illustrated in Figure 2.1.9, the input structure superficially resembles a HEMT [2.1.19].

However, differences between the two devices are numerous. Under normal operation all charge

is moved by the SAW potential travelling at the acoustic velocity, which is two orders of

magnitude slower than the saturation velocity in a HEMT. The epitaxial layers also differ. In

a HEMT, the AIGaAs charge control layer in heavily doped n-type. As described by the

Anderson model, the differing electron affinities of the narrow bandgap GaAs and the wider gap

A1GaAs create a conduction band discontinuity at the heterojunction interface [2.1.20]. In

equilibrium the doped A1GaAs layer provides electrons which collect in the potential well formed

by this discontinuity. This creates a highly concentrated 2-DEG channel region. In contrast, the

charge control layer in a HACT acts only to form a space-charge region which broadly confines

the carriers in the vertical direction the transport channel. Also, as discussed in the last section,

the equilibrium channel concentration is kept quite low (~10 t4 cm 3 ) so as not to exceed the

polarization charge limit. Moreover, the cap layer of a HEMT structure is heavily doped n-type

to aid in the formation of channel ohmic contacts. This is not possible in the HACT structure,

because the shorting of the acoustic potential at the surface will cause a significant decrease in

2



Figure 2.1.9
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Schematic of the HACT injection structure-and associated equilibrium band
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the SAW potential at the transportdepth [2.1.11]. Thus it turns out that most MESFET and

HEMT equivalentcircuit models are not really applicableto HACT devices. However, the

subthresholdregion of MESFET and HEMT operation, not generally consideredin the

developmentof equivalentcircuit models,doesresemblethe chargeinjection into the HACT

channel. Whenthechannelregionis completelypinched-off,the MESFETor HEMT is saidto

be in thesubthreshold region [2.1.14], [2.1.21], [2.1.22]. In a conventional MESFET or I-]EMT

operating in this regime, charge present in the n ÷ ohmic region diffuses over the potential barrier

set up by the gate voltage. It might also be noted that injection in HACT devices is similar to

charge injection in heterostructure insulated gate FET's (HIGFET's) [2.1.23].

The theory of HACT charge injection is presented in the following subsections. The

development this theory parallels the theory of subthreshold injection in more conventional

semiconductor devices. The inclusion of the SAW potential does complicate the problem

somewhat, so the derivation is broken up into several steps, the first of which is to determine

the equilibrium mobile electron concentration throughout the injection region. Although

numerical methods are available to do this accurately, some assumptions can be made that allow

the formulation of an approximate analytical solution. The next step is to evaluate the

nonequilibrium concentrations in the injection region. Again, simplifying assumptions are made

to make the problem tractable using analytic methods. Once the mobile carrier concentrations

are known, the final step is to incorporate these into the drift-diffusion equation in order to arrive

at an analytical expression for the instantaneous channel current. An additional step is performed

to obtain a closed-form expression for the steady-state channel current as a function of gate

potential.
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2.1.3.1 Determinationof Equilibrium CarrierConcentration.

Referring to Figure 2.1.6, the injection region is divided into four parts. In the first

region, the ohmic contact (x<Lcs)containsa high concentrationof mobile electronsdueto the

diffusion of dopantsduring the alloy process. The determinationof the actual fi'ee carrier

concentrationin this region is quite difficult for severalreasons. The first of which is the

degeneratenatureof the doping in this region Nos(x), which precludes the use of Boltzmann

statistics. Secondly, widely differing reported experimental results imply that the alloy process

itself is not well understood [2.1.24]. It is often assumed that the concentration is on the order

of 10 _9cm 3, and that the ohmic drop during the current injection is negligible [2.1.25]. Within

the ohmic region, the conduction band is considered flat, and quasi-neutrality is assumed. Hence,

, ---Nos, since the doping concentration is many orders of magnitude higher than the polarization

charge. The potential is related to the carrier concentration by

n(x) = Nc F,r_[--._T,(X)] (2.1.14)

where F m is the Fermi integral of order 1/2 [2.1.14].

The second region, between the source and gate contacts ( -Los < x < 0), will be referred

to as the "injection region" throughout this section, as it is the concentration in this region that

most greatly affects the charge injection operation. Here the concentration can be found from

the solution of Poisson's equation. Since the potential in this region is reacting to a large change

in doping, neither the quasi-neutrality nor depletion approximations can be assumed [2.1.14]. The

equation to be solved is then
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:*- (2.1.15)

where No(x) = Nos for x < -Los and No(x) = Noc ^ for -Los < x < 0. What is often done for small

potential perturbations (Aw<<kT/q) is-to expand the exponential dependence of the carrier

concentration on the potential in a Taylor series, resulting in a linear ordinary differential

equation, and the well-known definition of Debye length [2.1.19]. This result can be applied to

the more general problem by recognizing that a larger change will result in a similar exponential

change in the potential. The form of this dependence can be deduced by empirically altering the

solution to the linear problem as follows:

x < -Los

-Los <x < 0

(2.1.16)q(x) =

where

- / =/
(2.1.17)

Requiring continuity of the potential and its derivative results in expressions for the parameters

oq and or,z:
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1 - _o_h/_os %s_'_V2
(g2 = _ (gl = - (g2

1 + ;_'2 qSo_h;_z_h_l

_hYl

(2.1.18)

where _,, and T2 are determined empirically. One might expect that the potential will drop off

somewhat less than the Debye length scale in the source ohmic region, and somewhat greater in

the injection region. This implies that y,<l, while T2>l. Figure 2.1.10a shows the potential

calculated from equation (2.1.16), and that calculated from PC-1D, a numerically-based Poisson

solver [2.1.26]. The x-axis is scaled by _'Och"

agreement is obtained over the injection region.

from degenerate effects not included in equation (2.1.16).

region is obtained from substituting equation (2.1.16) in the

It is seen that for '1(,=0.05 and T2=8, good

The larger discrepancies around x=-Lcs result

The concentration in the injection

Boltzmann distribution.

= NceX p -_Tq/Och 1 - ot2e-v2--_ (2.1.19)n(x)

Noting that ft.2= 1-_0,/_0 2 when 2.os << _h, a simplified expression can be obtained when x<<g.och:

n (x) = NasNaChN¢e,xp[-[ _y (1]loc_ - q/os)'Y2"-"_Jx- Los]
(2.1.20)

Figure 2.1.10b shows the concentration as calculated from equation (2.1.20) compared to that

calculated using PC-1D. The agreement is good over most of the injection region.

The next region to discuss is that beneath the gate (O<x<Lc).

this area is depleted by the built-in voltage of the Schottky contact.

derive the threshold voltage V,h by integrating Poisson's equation.

Under normal operation,

This forms the basis to

Variation of the potential in

7



0.25
| | !

O.2

0.15

£
_ 0.1

_ O.O5
Q.

0

_.05

-0.1

I

I____I S
P_-lo,I _'

I w_ I i i

- -0.5 0 0.5 1
Distance (Debye Len_hs)

(a)
lO_

1019 1
i 1018 • _ "1017 _ .

1016

1015

1014

1013
-1 .0.5 0 0.5 t

I:xmnce(DebyeLengths)

(b)

Figure 2.1.10 (a) Injection region potential calculated analytically and from PC-1D.
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the x-direction can be neglected if the gate is longer than a few Debye lengths, and the

integration done in one dimension. In the absence of a gate bias, the total potential in this region

is the superposition of the Schottky barrier, depletion, and conduction bandgap potentials,

provided they exist. The threshold voltage then is given by the potential at the bottom of the

depletion region, which is assumed to extend to the bottom of the channel layer. In the case of

the p-HACT structure proposed by Smith, et al. [2.1.10], a pn junction is used to form the top

barrier, and the gate is recessed to the charge control layer. The threshold voltage for this is

given by

v, = + +a:m_l_o.,,..o, (2.1.21)
%

where q#_ is the Schottky barrier height, dec is the thickness of the charge control layer, and No, _

its donor concentration, and d_h is the thickness of the transport channel layer with doping Noch.

In the case where an AIGaAs layer is used to form the barrier at the top of the channel, the

conduction band discontinuity AE_ must be included in the calculation of threshold voltage. The

gate is not usually recessed in this material structure. Thus V,h is given by

= q()b -Aec) + + a;dvo c

where d_p is the cap layer thickness, and Noc p is its doping.

The last region to consider is the channel region, x>L c.

2
+ d_Nl)ch ) (2.1.22)

The equilibrium concentration

is obviously No_ _ at a location several Debye lengths from the end of the gate. Being many

orders of magnitude smaller than Nos, this creates a barrier in equilibrium (l)w, which must be

overcome by the SAW potential. The height of this injection barrier is given by
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(2.1.23)

whereFIa_ is the inverse of the Fermi integral function

m

--f d_ . (2.1.24)
o 1 +e _-¢j

This is not an easily invertible function; however the tabulated values indicate that the conduction

energy lies about 6kT below the degenerate level for doping on the order of 1019 cm "3 [2.1.19].

As a minimum, the SAW potential amplitude _,o must exceed the injection barrier (-0.35 V for

Noch=lO 14 cm-3), or no net current will flow into the channel. The injection barrier is plotted as

an operational boundary in Figure 2.1.7 in Section 2.1.2.

2.1.3.2 Nonequilibrium Carrier Concentration.

When a SAW potential _,(x, t) is propagating through the HACT mesa, the concentration

in the source and injection regions are only perturbed a small amount since the polarization

charge concentration is many orders of magnitude smaller. Hence, the effects of the SAW

potential are neglected here. As seen from the quasi-equilibrium ACT model developed in

section 2.1.1, the concentration in the channel region is greatly affected. A similar situation

occurs in the gate region. When a gate bias voltage Vcs is connected between the source and gate

contacts, a depletion depth changes beneath the gate. The total potential beneath the gate is now

given by Vcs - V,h + _,(x, t), assuming negligible current flow into the gate and negligible
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screeningfrom anymobilecarriersthatmightbepresent.

input of the gateregion, n(x=O,t) is then given by

The free electron concentration at the

n(O,t) -

"Dch
(2.1.25)

assuming that LGs is small enough that the concentration is much greater than the channel doping

Noc h and the acoustic polarization charge N,o. It is seen that the gate voltage controls the amount

of charge available for transport by the SAW potential, if the conditions specified in section

2.1.1 are met.

2.1.3.3 Drift-Diffusion Injection Theory.

Having established the concentration in the injection region, the next step toward

formulating the injection model is to analyze the motion of the electrons in the presence of the

SAW potential. The drift-diffusion model under steady state assumptions is adequate to describe

the motion of carriers in the injection region because of the slow variati<,,, of the potential in the

transport direction [2.1.5]. When a SAW potential with an amplitude in excess of the injection

barrier is propagating, channel current is expected to flow from source to drain due to the carrier

bunching effects discussed in the last section. The application of a negative gate bias will limit

this current by deepening the gate depletion region, and thus heightening the barrier over which

the carriers must flow. A common technique used to evaluate carder transport over a barrier is

to integrate the current over the barrier region. Since the current is constant, it can then be

evaluated from the boundary conditions at the depletion region edges [2.1.14]. Assuming that
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the carrier concentrationin the GaAs transport channel is

instantaneouschannelcurrentIc through the gate region is

uniform in the y-direction, the

Ic(x,t) = - Wdchq(n(x,t) ttn d-_ + D dn Isdx
(2.1.26)

where W is the channel width, p, is the electron mobility, and D, is the diffusion constant for

electrons. In keeping with the development of the MESFET subthreshold model of Liang, et al.,

the drift current term in equation (2.1.26) is neglected because of the low concentration of carriers

in the depletion region, and because the potential beneath the gate is relatively flat [2.1.22].

Assuming that recombination in the depletion region can be neglected, the current continuity

equation forces the current to be constant throughout this region. Hence, integration of equation

(2.1.26) results in a simple expression for the injected channel current:

q Wdch Dn.

It(t) = _a [n(Lo,t) - n(O,t)] . (2.1.27)

An expression for the concentration at x=0 is given in equation (2.1.25). Initially, the well into

which charge is injected into is empty, and n(L_,O) << n(0,0). Hence, the channel current can

be approximated by

Ic = Wdchq Dn .NosNoch [ x-L°sLo N,

• ].

(2.1.28)

In reality, the well is filling up as charge is injected, hence decreasing the rate of charge

diffusion. Ic will decrease substantially from this value as the charge packet concentration
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increasesto asignificantfractionof n(0,t). Hence, equation (2.1.28) is valid in the low injection

limit. The rate equation can be solved to obtain a more exact form of the injected charge.

However, this rate equation is nonlinear because concentration in the well changes as a function

of the charge load. In order to keep a closed-form expression, a simple empirical modification

to equation (2.1.28) can be made by introducing an ideality factor rl:

x - Los ]
L° Nc (2.1.29)

"exp[_(Vos- V_ +*,(O,O)].

Strictly speaking, the ideality factor 1"1is a function of gate voltage Vcs through its relation to

the well charge. However, proper selection of this parameter results in agreement over wide

ranges of operation. It should be pointed out that some ideality factor would have to be

introduced into equation (2.1.28) regardless of the well filling effect, to account for recombination

in the depletion region. It has been found for depletion regions of lower doped pn junctions that

1"1=2 results in a good fit to the measured I-V characteristics because of the bulk recombination

effect [44]. So it is expected that rl=2 would be the asymptotic limit for low injection, and that

1"1would increase as the average injection current increased.

2.1.3.4 Gaussian Approximation for the Instantaneous Channel Current.

The expression given in equation (2.1.29) for the instantaneous channel current is closed-

form, but is not easily integrable because of the cosine term in the exponential. For the purposes

of calculating the steady-state channel current, the cosine is expanded out to two terms in a

Taylor series. A sampling aperture function S(t) can then be defined which is essentially

Gaussian in form,
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Figure 2.1.11 Calculated sampling.aperture function using exact formulation and Gaussian

approximation for a 1 mm wide channel, T! = 5.5 and _s = 0.26 V.
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where

Ic (Vos,dP_o,t) _- WdchqDnN°s-ext_- Los)

"exP( _(Vos- V_-t_o))'S(t) *i "_,_.8(t- 2-_ )

(2.1.30)

r_

8(t)=e-2°--_' °-_l-falllkTq_Pso" (2.1.31)

Plots of Ic(t) calculated from Eqs. (2.24) and (2.25) are shown in Figure 2.1.11. It is seen that

there is little error introduced by the Gaussian approximation. Defining the sampling width to

be a as given above would imply that 67% of the charge injected into the well occurs during this

time. The approximate width of the sampling aperture has been the subject of much debate. It

has been claimed that the aperture is a very small fraction of a SAW period [2.1.6], [2.1.7],

[2.1.27]. From equation (2.1.31), typical values for HACT device designs reported in [2.1.7]

result in apertures approximately 30% of the SAW period. This is experimentally verified in the

next section.

2.1.3.5 Average Channel Current.

The average channel current (Ic(Vcs)) can be obtained by integrating over one SAW

period Ts . This can be done by numerically integrating equation (2.1.29), or analytically by

expanding the limits of integration to infinity on the Gaussian definite integral formed from

equation (2.1.30). In doing the later, an approximate analytical expression for the average

channel current is developed:
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f Ic(V_s,C_soc°s(2_fst))dt
-rot2

=- Wdchq DJVm "eXD(-Lc;s) (2.1.32)

equation (2.1.32) predicts an exponential dependence of the average channel current on the gate

voltage, which is the same as observed in MESFET's and HEMT's in the subthreshold region.

This is verified experimentally in the next section.

2.1.4 Experimental Technique for Injection Model Verification.

Verification of the analytical injection model presented in this chapter was made by

measurement of HACT devices fabricated at Georgia Tech and United Technologies, Inc. The

two salient features predicted by the injection model are the Gaussian shape of the sampling

aperture and the exponential dependence of the average channel current on the gate voltage.

2.1.4.1 Injection Aperture Test Setups and Procedures.

The Gaussian shape of the aperture function has been verified by measuring the

conversion loss of the input sampler with input signal frequencies at harmonics of the Nyquist

frequency. The mathematical basis of this measurement, and how measurement of the conversion

loss relates to the aperture shape, can be understood by referring to Figure 2.1.12. This shows

the functional block diagram of the HACT devices on which these measurements were performed.

The output current is the product of the sampling function and the input voltage signal. Since
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the sampling function is periodic, it can be expressed as a Fourier series

_ - -Jingo t (2.1.33)S(t) = .,,¢
111_-m

where j=(-l) _a, too = 2Jr f_, and a,. is the ruth Fourier coefficient. Thus, the determination of

these coefficients leads to the shape of the sampling aperture. Assuming that S(t) is real and even,

then a,. -> 0 for all m. If a sinusoidal signal, vk(t), of a frequency some integer multiple of the

Nyquist frequency

(2.1.34)

is applied to the gate, then the output channel current, bandlimitted by the bandpass filter function

of the NDS array, it can be expressed as

1 (2m-k ot)_i_,t_ _ (2.1.35)i'kCt): i 2

where _5is the Kronecker delta function. It is seen that the amplitude of ik is twice the value of

the Fourier coefficient a,,._. Thus, measurement of the power at the kth multiple of the Nyquist

frequency will give the Fourier coefficient, and hence the shape of the injection aperture.

2.1.4.2 Injection Aperture Measurements and Results.

The injection aperture was measured on two HACT devices with identical input structures

using the setup shown in Figure 2.1.13. The time-domain waveform was reconstructed from

measurement of the first three Fourier coefficients. The resulting aperture function as calculated

using equation (2.1.33) is shown in Figure 2.1.14, along with the Fourier reconstructed sampling

function.
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b..

Figure 2.1.13 Test setup used to measure injection aperture shape. Input signals are multiples

of the Nyquist frequency. Output is input frequency u'a_slated by a harmonic of the aperture
function.

39



¢:
¢)

O
¢:

I,I.
G)
I,-
=3
k,,
(I)
Q.

Calculated
HACT B-1
HACT C-4

-0.8 -0.1 0.1 0.8
Normalized Time (Ts)

i

Figure 2.1.14
Measured versus predicted aperture function for two 1 mm wide HACT devices.
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2.1.4.3 AverageChannelCurrentTestSetupsandProcedures.

Therelationshipbetweensteady-statechannelcurrentandgatevoltagewasalsoverified.

This wasdoneusingthe test setupdiscussedin section2.1.2. The averagechannelcurrentis

calculatedfrom theapproximateGaussianintegralgivenin equation(2.1.32),andby numerically

integratingequation(2.1.30). Thedifferencebetweentheseis too small to discern,henceboth

resultsappearasthe"predicted"valuesin Figure2.1.15. Themeasured(lc)-V_scurveof al mm

wide HACT device designed and fabricated by United Technologies is also shown in Figure

2.1.15. The ideality factor rl and was adjusted so that the calculated (lc) was in close agreement

with the measured average channel current. It was found that 11=3.3 gave good results over a

wide range of channel current values.

2.1.4.4 Average Channel Current Measurements and Results.

The nature of the average channel current as a function of gate-source voltage has been

the subject of some debate. An. exponential dependence was shown by the numerical model

developed by Bogus for buried channel ACT devices [2.1.1]. However, Merrit observed a

square-law dependence in HACT devices, similar to what is seen in a MESFET above threshold

[2.1.8]. It was observed in this research that the measured channel current does follow an

exponential dependence as predicted by the injection model for low injection levels. However,

the variation of the ideality factor with gate voltage causes a less than exponential dependence

in the (lc)-Vcs characteristic. It is possible that this variation would result in an empirical fit to

a square-law characteristic. However, the physical basis for this is due to completely different

mechanisms than are present in a MESFET operating in the saturated region.
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2.1.5Summary of Resultsand Conclusions

This chapter has presented the first analytic theory of charge transport and injection in

HACT devices developed from the physics of the device operation. The transport model includes

expressions for charge packet concentration, charge capacity, and barrier height between adjacent

packets, in terms of the physical device parameters and operating conditions. It was seen that

charge transport is greatly affected by channel doping, and there exist maximum and minimum

conditions for both the doping and SAW potential in order for charge transport to occur. The

theory was verified against measured data for a number of HACT devices fabricated at Georgia

Tech and elsewhere. The injection theory predicts the instantaneous and average channel current

as a function of device geometry and operating conditions. This was the first analytic description

of the injection aperture shape, which was found to be approximately Gaussian. The physical

mechanism of subthreshold current injection was also used to explain the average channel current

dependance on gate voltage being close to exponential. Both the instantaneous and time-averaged

channel current functions were verified experimentally.

The work presented in this chapter provides a framework within which one can quantify

tradeoffs in the design of HACT material architecture and device geometry. The model can also

be used to predict the limits of the technology for specific applications.
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2.2 Piezoelectric Thin Films on GaAs-Based materials

A potential application for piezoelectric films on GaAs substrates is the monolithic

integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the

SAW properties of the layered structure is critical for the optimum and accurate design of

such devices. The acoustic properties of ZnO films sputtered on {001 }-cut

<110>-propagating GaAs substrates are investigated in this article, including SAW velocity,

effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and

reflectivity of shorted and open metallic gratings. The measurements of these essential SAW

properties for the frequency range between 180 and 360 MHz have been performed using a

knife-edge laser probe for film thicknesses over the range of 1.6 to 4/am and with films of

different grain sizes. The high quality of dc triode sputtered films was observed as evidenced

by high K 2 and low attenuation. The measurements of the velocity surface, which directly

affects the SAW diffraction, on the bare and metalized ZnO on SiO 2 or Si3N 4 on {001 }-cut

GaAs samples are reported using two different techniques: I) knife-edge laser probe, 2)

line-focus-beam scanning acoustic microscope. It was found that near the <110> propagation

direction, the focussing SAW property of the bare GaAs changes into a non-focussing one for

the layered structure, but a reversed phenomenon exists near the <100> direction.

Furthermore, to some extent the diffraction of the substrate can be controlled with the film

thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero

reflectivity is observed for a shorted grating. There is good agreement between the measured

data and theoretical values.
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2.2.1 Background:

Over the past two decades, ZnO has been the most frequently considered piezoelectric

film for use for increasing the piezoelectric coupling in cases of a weakly- (e.g. GaAs) or

non-piezoelectric substrate [2.2.1]. The use of a ZnO layer with a GaAs substrate will

enable one to monolithically integrate surface acoustic wave (SAW) devices with GaAs

electronics. Furthermore, such a structure will have low dispersion due to the similarity of the

SAW velocities of both materials [2.2.2]. In this paper, the feasibility of ZnO films deposited

on GaAs substrates for SAW device applications is investigated along with a detailed

discussion about the problems which occurred during the characterization of the ZnO/GaAs

structures.

Knowledge of SAW properties of the filmed structure is crucial for the accurate design

of SAW devices. Herein, the experimentally determined fundamental SAW properties are

reported including velocity, effective piezoelectric coupling constant K 2, attenuation for the

1.6 to 4 l.tm thicknesses of c-oriented ZnO film over semi-insulating {001 }-cut

<110>-propagating GaAs substrates in the frequency range of 180-360 MHz.

Another critical acoustic property for the design of SAW devices is diffraction of the

surface acoustic wave. Diffraction in anisotropic media can generally be described by the

slowness surface or the velocity surface. The velocity surfaces on free and metalized surfaces

were measured using two independent techniques: 1) knife-edge laser probe, 2)

line-focus-beam scanning acoustic microscope (LFBSAM). The results from both methods

are compared with the theoretical results.
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Metallic gratings are basic elements required for the construction of SAW devices.

Analyzing the reflectivity and the velocity change due to metallic gratings has been studied

since the invention of SAW devices; however, no research on gratings on multilayered

structures has been reported. Datta and Hunsinger have analyzed the grating properties on a

single crystal by separating into the piezoelectric shorting and the mechanical scattering due

to the mass loading and the stress [2.2.3]. In this paper, an extension of their technique to a

multi-layered structure is presented. Experimental results for a shorted and an open grating

are compared with theoretical calculations.

A passivation layer such as SiO 2 [2.2.4], Si3N 4 [2.2.5], or SiON [2.2.6] between ZnO

and GaAs might be required in order to: 1) passivate the structure and enhance the yield, and

2) prevent unwanted doping of GaAs by Zn during the sputtering processes. The application

of such a passivation layer was obtained with a plasma-enhanced chemical vapor deposition

(PECVD) for SiO2 and CVD for Si3N 4. The acoustic parameter differences with and without

the passivation layer are discussed. Theoretical calculations of SAW velocity and K 2 as a

function of film thickness were performed using the Laguerre polynomial technique [2.2.7].

2.2.2 ZnO film growth,

C-axis oriented polycrystalline ZnO films were grown at Motorola using both rf

magnetron and dc triode sputtering method on {001 }-cut GaAs wafers which were grown by

the liquid-encapsulated Czochralski (LEC) technique. The GaAs wafers, which were

chemically and mechanically polished on both sides, were semi-insulating with resistivity _ =

107f_-cm, and the surface normal direction was [100] + .1 °. The quality of the film strongly
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dependson the fabricationconditions.The typical depositionparametersused for the ZnO

film arelisted in Table 2.2.1.The film thicknessesof 1.6,2.8, and 4.0 _tmhavebeen

chosento cover the rangeof 0.1-0.5of the acousticwavelength,_. As a passivationlayer, a

1000]k PECVD SiO2layer wasdepositedfor the rf magnetronsputteredZnO films anda

2000A CVD Si3N 4 layer was deposited for the dc triode sputtered films. The choice of a

passivation layer was made solely on the equipment availability.

The as-grown ZnO films were transparent with a very smooth surface finish.

The grain size of the ZnO films was 0.2 to 0.5 l.tm for the rf magnetron sputtered films, and

no grain boundaries are visible under scanning electron microscope (SEM) examination for

the dc triode sputtered films indicating the grain size was beyond the resolving power of the

SEM. From X-ray diffraction and atomic force microscope (AFM) measurements, the grain

size of the dc triode sputtered films is 30 to 50 nm. The problem with these particular dc

triode sputtered films, however, is that a compressive stress is induced in the substrate at the

time the film is grown. The induced stress is greater with the thicker films such that 2" wafers

are warped, making it difficult to process IDTs. Thus, only the ZnO film thickness of 1.6 l.tm

was investigated for the dc triode sputtered films. It has been previously reported that a

decrease in the internal compressive stress results in a decrease in K 2 [2.2.8].

The orientation of the ZnO film was characterized using the X-ray diffraction

technique. The diffraction patterns showed that all samples had strong c-axis texture; i.e.,

there were no ZnO peaks visible except those from the basal planes.
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2.2.3 Characterization of acoustic properties

A number of devices were fabricated using a standard lift-off process on 1.6, 2.8, and

4 gm thicknesses of the ZnO films. Employing one set of four IDTs with different center

frequencies enables the investigation of frequency characteristics over the range of 180-360

MHz. The configuration of the IDTs is listed in Table 2.2.2. The values of the SAW

wavelength, _., in the table denote nominal values. Each IDT is unanodized with metallization

ratio (finger width to grating period) of 0.6. The apertures of the IDTs were chosen to

facilitate the measurement of the slowness surface on bare GaAs substrates [2.2.9].

Considering the non-acoustic resistivity of the IDTs [2.2.10], the metal thickness was chosen

to be 1000 A of A1/4% Cu alloy. For ease of fabrication, the smallest dimension for the

devices was no less than 2 l.tm; therefore, IDT No.1 utilized split finger electrodes while the

others utilized the single finger configuration. Acoustic absorber was applied at both ends of

the device in order to prevent SAW reflections from the edges.

2.2.3.1 Vsaw

The value of _, is inferred from the periodicity of the IDT electrodes, and the SAW

velocity, V_w, in the IDT region may be obtained to first order by the relation, V_w = f¢/_,,

where fc represents the center frequency. The value of the nominal _, within the free

ZnO/GaAs surface region is different and is measured directly by using a technique such as

the laser probe system. The measured values of fc are shown in the Table 2.2.2, and the

variation of f¢ is due to the fact that V,w is dispersive depending upon the ZnO film

thickness as well as the passivation layer.
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A knife-edgelaserprobesystemwasusedto measureSAW properties.The useof the

laser probe system and the scheme for the longitudinal and transverse scans has been

described in [2.2.11 ] and [2.2.12] and will not be discussed here. In this study, the signal to

noise ratio of the laser probe was typically 40-50 dB, and a 3 l.tm diameter laser spot was

used. From several devices on each sub,:trate, the best device was chosen for the experiments.

The SAW velocity measured with the knife-edge laser probe is shown in Fig. 2.2.1 along with

the theoretical values. The velocity dispersion is plotted as a function of

wavelength-normalized film thickness. The theoretical values were calculated with the value

of _, set to 10 l.tm. The material constants in the calculation were those given by Slobodnik

[2.2.13] and Hickernell [2.2.5].

The maximum difference between the SAW velocities of the free surface _'rneasured

with the laser probe) and in the IDT area, from the center frequency measurements, was

0.3%. The maximum velocity deviations caused by the passivation layer were 0.6 and 1.6 %

for SiO 2 and Si3N 4, respectively, and these figures agree well with the values from the center

frequency measurements. The accuracy of the velocity measurement is approximately 0.3%.

The detailed discussion about the accuracy can be found in Bright, Kim, and Hunt [2.2.14]

and will not be reproduced here.

In using the laser probe, difficulty in making the free surface measurements was

experienced due to the multiple reflections of the laser beam between the film-substrate

interface and the air-film. For three film structures (2.8 and 4.0 l.tm rf magnetron sputtered

ZnO and 1.6 _tm dc triode sputtered ZnO/0.21.tm Si3N4), no appreciable energy from the laser

beam was reflected from the free surface areas which is similar to what happens with
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anti-reflection coatings in optics. This made probing impossible. For this reason, the velocity

shown in Fig. 2.2.1 is the measured data on the metalized surface as well as the theoretical

value on short-circuit surface. More detailed analysis about this multiple reflection can be

found in [2.2.15].

2.2.3.2 Piezoelectric Coupling (K 2)

The effective piezoelectric coupling constant K 2 is generally obtained by a

measurement of the relative shift in velocity between open- and massless short-circuit surface

as follows,

K2=2 (V°-V') (2.2.1)
V

O

where Vo and V, are the open- and short-circuit velocity, respectively. For the measurement of

V S, a metal pad was fabricated on one side of the IDTs to short out the electric field on the

surface while the other side of the IDT was left as a free surface. In order to reduce the mass

loading of the metal pad, it was fabricated with 250/_ thickness of AI/4% Cu alloy. In spite

of the finite thickness of the pad, its mass loading would be negligible because its thickness is

only 0.0016 to 0.0031 of _, (16 to 8 l.tm) and it has a very slight effect compared to the

piezoelectric effect [2.2.11]. This assumption was confirmed by a theoretical calculation using

the Laguerre polynomial technique [2.2.7]. The velocity change due to the mass loading was

calculated to be at most 0.015% which is much less than the expected value of K 2 for the

ZnO/GaAs structure.

The value of K z calculated bY using Eq. (2.2.1) is shown in Fig. 2.2.2 as a function of

normalized film thickness. The data points represent average values obtained from several
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measurements. It is seen that the value of K 2 for the dc triode sputtered film is about 1.7

times larger than that of the rf magnetron sputtered films as expected from the grain size of

the film. The measured value is 40-80 % of the theoretical one, which is comparable to

Hickernell's observations on the other substrates [2.2.1]. This value is still approximately

5.7-10.8 times larger than the typical value for bare GaAs (0.07 %).

2.2.3.3 Propagation Loss

Acoustic propagation loss (attenuation) is also a crucial parameter in device

applications of piezoelectric films. The attenuation of the SAW can be measured by

comparing the energy contained in the wave of two different transverse scans, separated by

some distance d The en.ergy is proportional to the value obtained by integrating the squared

magnitude of the beam profile IUI2 along the transverse direction. The scan length should be

made long enough to include the entire energy since the beam spreads out due to diffraction.

Thus, the attenuation _ is given by

IVl'ax) a)

where _ is a step size for the scan. It should be noted that this attenuation includes not only

1) so-called viscous loss due to interaction with thermally excited elastic waves, 2) scattering

by crystalline defects, impurities, and surface roughness, and 3) air loading but also the losses

due to diffraction and the leaky nature of the wave on GaAs [2.2.16]. The effects of loss due

to interaction with electrons should be negligible because of the high resistivity of the

substrate.
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The propagation loss shown in Fig. 2.2.3 was observed in the frequency range of

230-290 MHz, by comparing several transverse scans on the metalized surface with the

distance of about 200_. and averaging the measured values. In fact, the diffraction was

relatively large compared to that of bare GaAs due to the characteristic of the ZnO film to be

discussed in the next section and the narrow aperture of the IDT (W=8.3 or 10_.). With

greater diffraction, more SAW energy can be lost to bulk shear since SAW propagation on

this cut and propagation direction of GaAs is a leaky SAW mode. Employing an IDT with a

wider aperture may reduce the value of the propagation loss in the measurement.

Nevertheless, the narrow aperture was used in order to obtain enough diffraction for the

velocity surface measurements to be discussed in the next section.

In the laser probe system, the output signal of the laser probe, which is detected with a

photo-diode, is filtered into dc and rf components. The dc component signifies the reflectivity

of the sample under test, and the rf component is related to the normal component of the

SAW particle displacement. While only the phase information of the rf component is required

for the velocity measurement, its magnitude is used for the attenuation measurement. Since

the magnitude of the rf component is proportional to the dc component, it is normalized by

the dc value Vdc. The accuracy of the magnitude measurement depends on, among other

things, the flatness of the surface. However, the sample is not perfectly fiat, resulting in a

slight defocus of the laser probe spot and a variation in V,_; thus, precise measurement of

attenuation is very difficult. Furthermore, due to the diffraction loss of the IDT, the maximum

deviation of the attenuation measurement was up to a few tenths of a dB/I.ts depending on the

scan distance.
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The measured data shows that the 1.6 lam dc triode sputtered film with the passivation

layer had the lowest loss and the 4 _tm rf magnetron sputtered film without the passivation

layer the highest attenuation, which is comparable to what has previously been reported

[2.2.1],[2.2.17]. The passivation layer had a noticeable effect on both sputtered

films-especially for the rf magnetron sputtered ones. The reduction in the attenuation is

perhaps due to the fact that the passivation layer provides a better platform for the film

growth by compensating for stress differences between the film and the substrate[2.2.2]. In

spite of the diffraction loss, it should be noted that the lowest value of attenuation for the

films is not severely worse than that of bare GaAs substrate, which has the values of 0.323

and 0.567 dB/_s, for 200 and 300 MHz, respectively [2.2.18].

The ZnO/GaAs structures may not have suitable temperature stability required for

some applications due to positive temperature coefficient delays (TCDs) of both bulk ZnO

(35 pprn/°C) and GaAs (50 ppm/°C). However, since the passivation layer of SiO:

(-70pprn/°C) has a strong negative TCD, improvement of the temperature stability may be

achieved by adjusting the passivation layer thickness [2.2.2]. An experimental compensation

of TCD of GaAs was reported by using a Au/SiO 2 film [2.2.19]. No measurements of the

temperature characteristics have been attempted in this research.

2.2.4 Velocity surface

2.2.4.1 Knife-edge laser probe measurements

The substrates investigated for the velocity surface were 1.6, 2.8, and 4.01xm rf

magnetron sputtered ZnO films with 0. ll.tm thick SiO2 passivation layer and 1.6l.tm dc triode
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sputtered ones with and without 0.21,tm thick Si3N 4 passivation when _, was 12 _tm. The

typical transverse scan data measured on the free surface of 1.6 l.tm dc triode sputtered

ZnO/GaAs and bare GaAs are shown in Figs. 2.2.4(a) and (b), respectively, where the SAW

propagation is along the <110> direction of GaAs. The two transverse scans were separated

by a distance of 200_,. Note that the acoustic diffraction with the ZnO film shown in Fig.

2.2.4(a) is much larger than that of bare GaAs, which clearly shows an focussing beam profile

in Fig. 2.2.4(b). Thus, the velocity surfaces of these structures are investigated theoretically

and experimentally to explain the difference in the diffraction.

The theoretical velocity curves of the ZnO film with a 0.1 l.tm SiO2 passivation layer

are shown in Fig. 2.2.5(a) as a function of the ZnO film thickness normalized to X. The

propagation directions are centered about the <110> axis. Note that the SAW velocity curves

for the ZnO film thickness of 0.13, 0.23, and 0.33 X on GaAs are concave upward, and this

is in contrast with that of the concave downward curvature for bare GaAs. The concave

downward and upward curvature infer respectively focussing and non-focussing behavior,

and support the diffraction shown in Fig. 2.2.4.

The effect of the passivation layer with 0. l_tm thick SiO 2 or 0.21.tm thick Si3N 4 is

shown along with non-passivated structures in Fig. 2.2.5(b) for the ZnO thickness of 1.6 _tm.

Since the passivation layer is treated as an isotropic media like the c-oriented ZnO film, its

presence is not expected to affect the shape of the curve, but shifts the entire curve slightly

toward faster values. Considering the fast SAW velocities of single SiO 2 and Si3N 4, one can

easily expect that the curve would shift upward as the thickness of the passivation layer

increases as long as the energy is trapped at the surface.
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Applying angular spectrum of plane waves (ASPW) theory to the transverse scans

produced velocity surfaces shown in Fig. 2.2.6. The usage of the laser probe system for the

ASPW theory has been described in detail in Hunt and Hunsinger [2.2.20]. Note that there is

close agreement between Figs. 2.2.5 and 2.2.6.

The analysis of the velocity curve in terms of an anisotropy parameter gives an

immediate insight into the diffraction of a propagating SAW. Using a parabolic

approximation, the velocity of the pure mode direction (<110> of GaAs) can be expressed as

v(0):vo(1 - b02) (2.2.3)

where v o is the velocity at 0=0, 0 is an angle off the pure mode direction in radian, and b is

the anisotropy parameter. The beam is spreading for b<0 and focussing for b>0 comparing to

the isotropic case, b=O [2.2.21]. As shown in Fig. 2.2.5, the parabolic approximation for the

0.33_, thick ZnO film is not appropriate since the curvature is almost fiat (i.e. isotropic) near

the zero angle. Therefore, the values of b for the 0.13 and 0.23_, thickness were obtained

from a least-square's curve fitting and are listed in Table 2.2.3 for the comparison between

the theory and the experiment.

The inversion of the velocity curves was investigated numerically for the other

materials. We arbitrarily chose GaAs, GaP, InAs, and InP since they are substrates with cubic

symmetry, and A1N and ZnO as the piezoelectric film both of which have hexagonal

symmetry. Material constants were available from Auld [2.2.22]. The inversion was observed

for all of the combinations; e.g., it occurred at 0.05_, thick ZnO or 0.03_, thick AIN both on

GaAs. The curves became flat as the film thickness was increased due to the isotropic

characteristic of the films. In addition, SAW modes exist only for relatively thin films of AIN
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dueto its much fastervelocity (5608m/s) thanthoseof the substrates(1990-3540m/s); e.g.,

for 0.11X or less thickness of AIN on GaAs. For comparison, the velocity curve was also

calculated for an isotropic film such as fused silica (3411 m/s) on GaAs, but in this case the

inversion did not occur. The calculation results suggest that both the hexagonal films (A1N

and ZnO) cause the inversion of the velocity surface in a cubic material for the cases

mentioned above. This indicates that it is possible to control the diffraction of the substrate

with proper selection of film thickness.

2.2.4.2 Line-focus-beam scanning acoustic microscope measurements

Again, Fig. 2.2.5(a) indicates that the velocity surface inversion occurs about the

<110> direction when the c-oriented ZnO film is deposited on a {001 }-cut GaAs wafer. Our

theoretical calculations also reveal that the reverse situation appears if the propagation is along

another pure mode axis <100> direction. In order to evaluate this prediction and allow the

measurement of acoustic properties along non-piezoelectric directions, velocity measurements

using a Line-Focus-Beam scanning acoustic microscope (LFBSAM) 3 operating at 225 MHz

were performed. The technique to deduce the velocity is the so-called V(z) analysis which has

been reported in detail in [2.2.23], Due to the requirement of the water coupling between the

SAM lens and the sample, the velocity measuied is associated with leaky waves for which the

waves leak their energy into the water. Thus, the measured velocity due to the water loading

is slightly different from the one measured by the laser probe. The mass loading of the water

is included in the V(z) analysis. The LFBSAM can also measure both leaky SAW and

pseudo SAW [2.2.23] which can exist in a {001 }-cut cubic crystal. The advantage of this

method is the ability to measure the velocity profile in 360 degr_s. However, the spatial
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resolution is limited (in this case an area of 300 lam by 1000 l.tm) because of the defocussing

requirements [2.2.23]. For the bare {001 }-cut GaAs, both leaky SAW and pseudo SAW

profiles were reported [2.2.24].

Fig. 2.2.7(a) shows the measured velocity surfaces for the 0 (bare), 1.6, 2.8, and 4.0

pm ZnO film on {001 }-cut GaAs. It is seen that the ZnO films change the focussing behavior

about the <110> direction into the non-focussing one and the reverse inversions appear about

the <100> direction. These results support our theoretical results and our laser probe

measurements. Effects of the passivation layer (0.1 _tm SiO: or 0.2 _tm Si3N4) for 1.6 lam

ZnO and {001 }-cut GaAs on the velocity surface are provided in Fig. 2.2.7(b), and they also

agree with the results obtained using the laser probe. Note that Figs. 2.2.7(a)(b) are solely

used to demonstrate the leaky SAW behavior about the <I I0> and <100> directions, the

details of their behavior farther away from these angles are not shown.

Experimental velocity surfaces with and without the metallization pad for small

deviations about the <110> direction are given in Fig. 2.2.8. Because the velocity

measurement accuracy performed by LFBSAM is better than _+0.02%, in principle these data

can be used to deduce the value of K 2. Recently, the V(z) analysis of LFBSAM measurements

for a multilayered anisotropic structure has been reported [2.2.25]. However, due to a lack of

understanding of the dielectric loading of the piezoelectric effect by the water, measurements

of K 2 can not be carried out at present. On the other hand, the water is distilled and

de-ionized to have a resistivity of 107f2-cm. The conductivity effect of the water is mingled

with its dielectric effect because the characteristic electromagnetic impedance is equal to the

root square of the permeability over the permittivity.
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2.2.5 Reflection properties of metallic gratings

An exact theoretical analysis of the reflection properties is extremely difficult. The

reflectivity and velocity shift of metal gratings on a single crystal can be analyzed by using

Datta and Hunsinger's technique [2.2.3] if the metal thickness is small compared to the SAW

wavelength. Considering that the metallic gratings effect the surface, Datta and Hunsinger's

theory developed for a single material can be directly applied to a multilayered substrate by

obtaining effective material constants of a single material equivalent to a multilayered

substrate. The effective constants c_n may be obtained by integrating multilayered material

constants weighted with SAW energy distribution and normalized by the energy as follows,

¢(Y) P(Y)
c_, = ¢- (2.2.4)

fay

where c(y) is a constant of the multilayered material tensor and P(y) is the energy

distribution as a function of the depth y. Since the substrate is piezoelectric, the mechanical,

electro-mechanical, and electrical energy distribution are utilized for stiffness, piezoelectric,

and permittivity tensor, respectively. The detailed expression for the energy distribution is

available from the Laguerre polynomial technique [2.2.7] and is not reproduced here. The

validity of using the effective constants may be checked by comparing between the SAW

velocity of ZnO/GaAs and that of the equivalent single material as is shown in Fig. 2.2.9.

The maximum difference between both velocities is 0.009.

The reflectivity of gratings can be divided into two components: the piezoelectric and

the mechanical. The former depends on the piezoelectric coupling constant K 2, and the latter

depends on the thickness h of the metal in wavelength X. The reflectivity r of a metal strip
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with a metallization ratio 1"1at a frequency f can be given by

fPz K2 ÷ F h] sinqnfr (n)-i- "7 y.
(2.2.5)

where fo is the center frequency, Pz is the piezoelectric scattering coefficient, and Fz is the

first order mechanical scattering coefficient. P_ is the same for all substrate--electrode

combinations and depends only on the metallization ratio. On the other hand, F_ depends only

on the substrate and electrode materials and is independent of the metallization ratio. More

detailed explanation about these parameters can be found in Hunsinger [2.2.3].

The value of Pz at fo is given as a function of rl by using the Legendre function

[2.2.3]. It is to be -0.75 when the value of 11 is 0.5. Fig. 2.2.10 shows the calculated values

of K 2 and Fz for an aluminum grating with 1/4 )_ width and 1/4 _, spacing (the same

geometry for solid finger interdigital transducers (IDTs)) on ZnO/0.25 I.tm Si3N4/GaAs as a

function of ZnO film thickness. As shown in Fig. 2.2.10, the value of K 2 increases from 0.07

% (GaAs) to 1.0 % (ZnO), and that of Fz decreases from 0.9 (GaAs) to 0.2 (ZnO) as the film

thickness increases. Thus, it is possible for the piezoelectric scattering and the mechanical

scattering to cancel each other due to their opposite signs. This zero reflectivity can not only

reduce triple transit interference (TTI) of IDTs for some filter applications but also allows

the use of a single finger IDT instead of a split finger IDT, thus increasing the frequency

range of easily fabricated devices.

In order to verify this remarkable theoretical expectation, a set of characterization

devices shown in Fig. 2.2.11 was designed to measure the effect of the gratings. The ZnO

films were grown by dc sputtering method with thicknesses of 0.8 and 1.6 l.tm with a 0.25
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lam CVD grown Si3N 4 passivation layer. The probe IDTs are 100 _, wide where _, is 16 lam

with a center frequency around 180 MHz. Each of the probe IDTs is 20 _, long, and split

finger electrodes are employed in order to reduce internal reflections. Both shorted and open

gratings with the width of 108 _, are investigated, and each of the gratings consists of 200

strips with 1/4 _, width and 1/4 _, spacing. The distance from the center of the front two

IDT electrodes with same polarity to the edge of the shorted grating is designed to be

(1/2n+1/4) _, and 1/2nk, where n is an integer, to measure the sign of the reflectivity since

the phase construction of a standing wave occurs at the distance of (1/2n+1/4) Z, for a

negative sign of reflectivity and $1/2n \lambda$ for a positive one [2.2.26].

The properties of open gratings were also investigated along with the shorted gratings.

Unlike the shorted gratings, the SAW regeneration from the open grating should be

considered in the analysis. At the center frequency, the reflectivity, ro, of an open metal strip

with the metallization ratio of 0.5 is given as [2.2.27]

ro=r + jO.64K 2 (2.2.6)

Due to this regeneration, the reflectivity of the open gratings always retains a positive

value with a larger magnitude than that of the shorted gratings; thus, the open gratings may be

suitable for reflectors or resonators, for which a strong reflectivity is desirable.

The identical IDT probes with free and metalized surface with a 120 _L wide and 200

_. long metal pad instead of the gratings were also fabricated to calibrate the measured data.

Moreover, from these calibration sets, the SAW properties of velocity, K 2, and attenuation for

the ZnO/GaAs substrates were also characterized. Three different thicknesses of the

aluminum gratings were deposited With an e-beam evaporator. The measurements using a
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surfaceprofile measurementapparatusshowedthey were400,800,and 1200]k, which

corresponded to 0.25, 0.50, and 0.75 % of k, respectively. The measurements were performed

with a HP8753C network analyzer with a time-gating feature.

The velocities for the 0.8 _tm and 1.6 I,tm ZnO thicknesses were 2928 m/sec and 2912

m/sec, respectively, from the center frequency measurements. The value of K 2 was also

obtained by comparing the difference of the time delay from the IDT 1 and 2 to the IDT 1

and 3 between the free surface and the metalized surface. It was 0.73 % and 1.1%,

respectively, but their accuracies may be degraded by the inaccurate value for the free surface

velocity obtained from the center frequency measurements due to the velocity shift under the

IDTs. More accurate measurement using the laser probe or the LFBSAM was not attempted

for these substrates, but the measurements for the other substrates are already discussed in

the previous section. The propagation loss was also measured by comparing insertion loss of

the IDT 1 and 2 pair and that of the IDT 1 and 3 pair with a similar manner described in

Melloch and Wagers [2.2.18]. Note that the loss due to diffraction is not considered in this

technique. The loss of the 0.8 _m and 1.6 _tm thickness was obtained to be 0.7 dB/las and 0.8

dB/l.ts on the metal pad, and 2.6 dB/I.ts and 3.6 dB/I.ts on the free surface, respectively. This

difference between the free surface and the metal pad is due to the large diffraction of the

ZnO/GaAs. The 120 k wide metal pad must act as a waveguide to confine the acoustic

energy and reduce the insertion loss, resulting in the reduction of the propagation Ioss. Note

that the results coincide well with the measurements by the laser probe, which are discussed

in the previous section.
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Fig. 2.2.12 shows typical unmatched frequency response between the IDT 1 and 2 pair

for the two shorted gratings (as mentioned before, the difference of their distance from the

IDT 1 is 1/4 _,) with the same metal thickness. Note that the phase construction and

destruction are clearly shown about fo. The reflectivity of the grating was obtained using the

time gating technique described in Wright [2.2.27]. Comparing the response of the IDT 1 and

2 pair with the grating to that without gives a total reflectivity of the gratings assuming the

distance between the IDT 1 and the grating is exactly correct for the total phase construction

and destruction. Note that the propagation loss is negligible. The reflectivity of each electrode

of the grating is given by [2.2.26]

Irl =tanh-l(/0 (2.2.7)
N

where R is the total reflectivity and N is the number of the electrode.

Figs. 2.2.13 (a) and (b) show the measured data and theoretical calculation for the

reflectivity of an electrode in the shorted and the open grating at fo as a function of the

metal thickness normalized in _,. Prior work concerning gratings on GaAs can be found in the

literature[2.2.28]. The value of K 2 was assumed to be 70 % of the theoretical value based

upon the measurements presented in the previous section. From the theoretical data, it is seen

that for the shorted gratings the positive reflectivity on bare GaAs decreases, and eventually it

becomes negative. The change in the reflectivity of the open gratings with film thickness is

not so drastic as for the shorted gratings. On the other hand, the reflectivity on bare GaAs at

fo is given by 1.1 h/_,, and its value has a marginal difference between the shorted and the

open gratings due to the very weakly piezoelectric regeneration. From the measurements, it
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should be noted that the sign of the reflectivity changes depending upon the metal thickness

and zero reflectivity occurs at the metal thickness of 0.50 % _, for 0.1 _. (1.6 I.tm) thickness

of the ZnO film for the shorted grating while the reflectivity for the open grating is always

positive. The measured data shows relatively good agreement with the theoretical prediction,

The difference between the theory and the measurements may be due to the inaccurate

effective material constants as well as the variation in the uniformity of the film and the

metal thickness over the entire surface.

The measurement of velocity shift of the grating was attempted from the shift of the

center frequency of the grating only response, fog- The shift of fog depending upon the metal

thickness was not noticeable for both ZnO films, but the frequency shift between the shorted

and the open grating was observed with the value of 0.05-0.25 MHz. It is known that the

regeneration of SAW from the open grating causes an increase in the velocity by 0.25 K 2 at

11=0.5 [2.2.27]; thus, the measured values are comparable to the calculated ones of 0.18 MHz

and 0.25 MHz for 0.8 l.tm and 1.6 _m thickness of the ZnO film, respectively.

2.2.6 Summary of Thin Film Work

Theoretical and experimental data have been provided for the design of ZnO/GaAs

based SAW devices, which may have the potential application for the monolithic integration

of SAW and electronic devices. An analytical tool for SAW properties of a piezoelectric thin

film was developed in this study, and its accuracy was verified with the experimental results

of ZnO/GaAs substrates.
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The SAW propertiesof both rf magnetronanddc triodesputteredZnO films on

{001}-cut <110>-propagatingGaAshavebeenmeasuredandcomparedto theoretical

calculations. The passivationlayer improvesthe ZnO film quality appreciablyfor both

sputteringmethodsby reducingthepropagationloss0.5-1.3dB/l.ts at 240 MHz depending

uponthe ZnO film thickness.The bestquality of film observedhasbeen1.6 l.tmdc triode

sputteredZnO film with 2000._ Si3N4, for which the propagation loss was 0.9-1.0 dB/I.t_ at

240-280 MHz. Its value of K 2 would be larger than that of the film without the passivation

layer, 0.65-0.75%. Compared with bare GaAs, this particular film substrate has approximately

0.6 % lower SAW velocity, at least I0 times larger K 2, and 0.6 dB/l.ts more propagation loss.

The velocity surfaces of the ZnO/GaAs substrates have been measured using a

knife-edge laser probe and a LFBSAM and have been theoretically predicted. It is found that

for certain thicknesses of ZnO film the velocity surfaces about the <110> direction are

concave upward in contrast with the concave downward curvature of the bare GaAs. This

causes the SAW to diffract as soon as it leaves the transducer. Theoretically, c-axis oriented

hexagonal films such as A1N and ZnO can be used to control the diffraction of a cubic

substrate such as GaAs, GaP, InAs, and InP by varying the film thickness.

The reflectivity of shorted and open metal gratings has been analyzed and measured.

The analysis showed that zero reflectivity could be obtained by a combination of the ZnO

film and the metal thickness and the metallization ratio. Experimentally, zero reflectivity at

the center frequency was observed at 0.5 % K thickness of a shorted aluminum grating with

1/4 k width and 1/4 _, spacing on 1.6 I.tm thick ZnO film with 0.25 l.tm thick Si3N 4

passivation layer over GaAs.
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TABLE 2.2.1: ZnO Film Deposition Parameters

Sputtering method

Target

Target to substrate

Background pressure

Substrate temperature

RF magnetron

ceramic 6.5 inch dia.

1.5 inches

8 mTorr

350 ° C

DC Triode

i

ceramic 4 inch dia.

2.5 inches

3 mTorr

250 ° C

Gas

Power

Rate

82% Ar 18% 02

400W

4.6 lam/hour

90% Ar 10% 0 2

150W

1.4 ].tm/hour
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TABLE 2.2.2: Numberof Finger PairsN is 50.5 for all IDTs

No. i

2

4

Type

split

solid

solid

solid

Nominal

wavelength

(_) [_m]

16

12

10

8

Measured

center

freq.(f c)

[MHz]

175.0-182.2

230.2-240.6

273.5-287.4

339.0-356.8

Aperture

(Wi)

[pm]

80

100

100

80

Aperture

(Wi)

t;qJ

8.3

10

10
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TABLE 2.2.3: AnisotropicFactorof 0.13 and 0.23X Thickness of ZnO Film. The Values

Are Obtained by Curve Fitting With a Least-Square Method. The Values in the Parentheses

Are for the Short Surface.

Zno Thickness

0.0

0.13_.

0.13X

0.13_,

0.23_.

Sputtering

method

RF Magnetron

DC triode

DC triode

RF Magnetron

Passivation

0

Theory

0.22

-0.13 (-0.16)

-o.13 (-o.16)

-0.14 (-0.17)

-0.44 (-0.56)

Experiment

0.45 a

-o.18 (-o.17)

N/A (-0.19)

-0.22 (-0.4)

-0.71 (-0.55)

0: None, 1: 0.1_tm SiO 2 , 2: 0.2J.tm Si3N 4

a Reference [2.2.11 ]
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2.3 Acoustoelectric Amplifiers

In the previous report, the concept of acoustoelectric amplification was introduced, an

analytical model was briefly presented and the motivation for the research in this area was

developed. In this section we present some theoretical predictions for bilevel structures using

the model of Henaff et. al [2.3.1]. We also discuss the segmented structure which will be

fabricated and tested over the first quarter of 1995. Finally the application of these devices to

the HACT imager is discussed including size and power consumption considerations.

2.3.1 Bilevel Model

The simple model of [2.3.1 ] was adopted from bulk acoustic (BAW) wave amplifiers

[2.3.2] and extended with great success to surface acoustics wave (SAW) devices. Due to its

relative simplicity and accuracy this model found widespread use in modelling devices

consisting of a semiconductor layer in close proximity or deposited on a piezoelectric

substrate. It is also valid for a piezoelectric film deposited on a semiconductor or a bulk

piezoelectric semiconductor. The details of the derivation may be found in [2.3.1].

Figure 2.3.1 shows schematically a amplifier structure on bulk n-type GaAs. The wave

is launched and received by the interdigital transducers (IDTs) at the ends of the device and

the surface wave is amplified due to the interaction with the drifting carriers accelerated by

the voltage applied at the ohmic contacts. Figure 2.3.2 shows a comparison between the

bilevel model and the experimental measurements on a 1013 0 2 doped GaAs substrate at a

synchronous frequency of 176 MHz [2.3.3]. Data points were taken from Figure 3 of [2.3.3]

and smoothed using the SPLINE function in MATLAB to produce a curve for the comparison
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with the bilevel model. The y axis is the gain measured over a 1 cm separation of the ohmic

contacts and the x axis is the voltage applied between the contacts. The model gives a good

first order approximation to the experimental device and serves as a good tool to make

predictions for our first experimental designs. The model deviates from the experiment at high

voltage but more accurate models will be developed as required throughout the project.

2.3.2 Segmented Amplifier

The device of Figure 2.2.1 had several undesirable characteristics, the most prominent

being the large voltage required across the ohmic contacts to amplify the acoustic signal.. This

high voltage problem was resolved by using a segmented structure [2.3.4]. The amplifier is

segmented into many smaller sections over which a much smaller voltage is applied. The

length of the segment is defined as L1 and the segment separation as L2 as illustrated in

Figure 2.3.3. The gain of the structure is the difference between the sum of the gain in the L1

sections and the loss in the L2 sections. Such structures were demonstrated successfully on

CdS with LI= 500 um and L2 = 250 um [2.3.5]. The voltage for maximum gain for these

devices occurred around 120 V.

Our approach is to design devices with the shortest possible segment length to give the

minimum power dissipation. Devices have been designed with L1 on the order one acoustic

wavelength to enable the device to be operated with drift voltages less than 5 V. The bilevel

model has been extended to predict the gain of the segmented structure. As a comparison to

the high voltage device, the curve of Figure 2.3.4 shows the predicted performance of a

segmented structure on 10 _3doped bulk CJaAs with L1 =I00 um and L2 = 20 um at a
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Figure 2.3.4
Bilevel model predictions of the performance of the segmented amplifier design.
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synchronous frequency of 176 MHz. In order to achieve low voltage operation, some tradeoffs

in size and power consumption must be made. As shown in Figure 2.3.4, the gain per unit

length is smaller for the segmented structure than the high voltage device due to the loss

incurred in the L2 sections. The power consumption may also be higher depending on the

length of L2. These tradeoffs will be examined in more detail as the project progresses.

Our devices will be fabricated on substrates consisting of a n-type epilayer on top of

intrinsic GaAs. The device operation is the same as for bulk material and the bilevel model

has facilitated the design of the first experimental pass. The layer stackup will be consistent

with that used in the HACT imager so that the amplifier may be integrated into the imager as

will be discussed in a later section. The structures intended for use in the HACT will consist

of single L1 gain sections placed throughout the imager. The segmented structure serves as an

experimental device to develop an accurate model and is also intended for signal processing

applications as a stand-alone device or integrated into a IC with other functions.

2.3.3 ZnO Overlay

The advantage of using a GaAs substrate for this device is the high carrier mobility. In

the region where the carrier velocity is less than the saturation velocity, the carrier velocity is

equal to the product of the mobility and the applied electric field. The gain of the device is

proportional to the carrier velocity and so is proportional to the applied electric field (ie.

applied voltage) times the mobility. Out of this it may be seen that the higher the mobility the

lower the applied required to obtain the same gain.
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The gain is alsoproportionalto the electromechanicalcouplingcoefficient, k2. The

disadvantageto usingGaAs is the relatively low valueof k2comparedto substratessuchas

LiNbO3.Howeverthis problemmaybeovercomeby usinga ZnO overlayto increasethe k2

by at leastanorder of magnitude.Figure2.3.5showsthe gain vs voltagecurve for a ZnO

overlay with anestimated k2 = 0.5% on the device modelled in Figure 2.3.4. We observe a

peak gain improvement of approximately 35 dB with the addition of the ZnO film.

2.3.4 Application to HACT Imager

As mentioned in the previous report, the motivation behind this project is to enable the

insertion of small gain blocks in between the pixels of the HACT imager to maintain a

constant SAW amplitude across all of the pixels. Our plan is to use minimum length blocks to

maintain minimum voltage operation. For example, if we use a single 8 um long gain block at

360 MHz ( 1 wavelength) with the ZnO overlay the peak gain would be 0.07 dB and the

power dissipation would be 0.036 mW. This by itself is not sufficient to overcome the SAW

propagation the loss over the length of the imager. However, if for example we insert 100 of

these miniature blocks along the propagation path of the SAW, then we would have 7 dB of

gain at a power dissipation of 3.7 mW. The number of blocks will be optimized depending on

the loss incurred over the SAW propagation path and the available real estate on the imager.

2.3.5 Summary

The bilevel model has been demonstrated for a bulk GaAs substrate. The model is

equally applicable to multilayer piezoelectric structures. A segmented structure must be used
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in order to use this device with a practical voltage. Some gain and power consumption

tradeoffs which result from the segmented structure will be examined later. The small gain

sections will provide a method by which the SAW amplitude may be maintained at a constant

level across the length of the HACT imager resulting in an overall lower power consumption

for the device.

90



2.4 Advances in ACT Device Modelling

Two different approaches to the modelling of acoustic charge transport devices have

been accomplished. The first is the optimization of the heterojunction acoustic charge

transport device. Material layer thicknesses and doping concentrations were varied in an

attempt to provide optimal characteristics. The second is modification of the existing code to

simulate ZnO on silicon acoustic charge transport devices.

2.4.1 GaAs Heterojunction ACT Optimization

Previous reports detailed the computer model used for the simulation of acoustic

charge transport devices and the design goals required for successful operation. One such

device structure is displayed in Figure 2.4.1. These computer simulations of the layer

structure displayed high charge carrying capacity. However, it was determined that due to the

thin AIGaAs layer and the relatively deep location of the charge packet that non-destructive

sensing contacts on the surface of the device would be highly inefficient. The image charge

created by the signal electrons would appear in the substrate, as shown in Figure 2.4.2,

instead of the metal layer. This is due to the distance from the electron packet surface being

three times larger than the distance from the packet to the substrate electrons. In order to

account for this short coming in the previous design a new design with a thick layer of

AIGaAs was examined, Figure 2.4.3.

Simulations of the new structure revealed the surface charge insensitivity of the

previous design with essentially the same charge carrying capacity.
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2.4.2 ZnO on Silicon Acoustic Charge Transport

Modifications of the device simulation code have enabled simulations of ZnO thin

layers on silicon substrates. Since silicon is not piezoelectric, the acoustic wave is supported

in the ZnO layer and the induced potential extends into the underlying silicon. However,

since ZnO is highly resistive simulation of the layer within the device model would be very

difficult due to the low carrier concentration. The modification of the code enables the

simulation of the acoustic wave only in the ZnO, and both the acoustic potential and the

carrier concentrations in the silicon substrate. Figure 2.4.4 displays the material structure, and

Figure 2.3.5 shows a conduction band contour plot created in the silicon by the SAW

potential. The SAW has created a potential well, very similar to that previously reported in

GaAs, which is capable of transporting charge.

2.4.3 Future Work on Device Simulation

Future work in the area of acoustic charge simulation will require further optimization

of the ZnO/Si system devices. In addition, future code modifications should make it possible

to simulate moving charge packets by using a moving simulation domain solution. In this

manner synchronis potential effects and injection phenomena maybe modelled leading to

highly efficient device designs.
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2.5 Materials Growth

In previous reporting periods materials growth development has focused on the

development of an indium-free mounting technique for 2 inch substrates along with

investigation of the spatial uniformity of dopant and host fluxes. In the present reporting

period efforts have concentrated in three areas; substrate heater modification, system cleaning

and temperature controller upgrading.

2.5.1 Substrate Heater Modification

Investigations into the substrate temperature uniformity showed that large temperature

variations across the substrate surface were present. These temperature variations were due to

the four filament design of the substrate heater in the Varian Gen II molecular beam epitaxy

system. Even upon rotation and the incorporation of a pyrolitic boron nitride diffuser between

the heater elements and the substrate rear surface, the effects of temperature variations could

not be eliminated. Therefore, a completely new substrate heater was designed, tested and

incorporated into the existing substrate heater mount. This heater is based upon a broad area

pyrolitic boron nitride encapsulated graphite heater element. Not only has this heater lead to a

much more uniform substrate temperature, but is also mechanically more robust than the

original Varian design. This design should eliminate substrate heater failure, which in the past

has been the major reason for system down time.
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2.5.2 System Super Cleaning

The second major effort in the past six months has been the complete cleaning of the

system. It was determined that the surface particulate density was higher than acceptable for the

large area devices required for this program. The majority of these particulates were found to

be generated in the growth chamber. To reduce the particulate density the entire system was

opened and scraped out. This has resulted in an order of magnitude improvement in the system

base pressure, along with a shortened bakeout time. A reduction in surface particulate density by

a factor of four has be observed after the system cleaning.

2.5.3 Gallium and Aluminum Controller Replacement

Recent publications along with our previous investigations lead us to closely monitor our

A1 and Ga effusion cell temperatures and fluxes. Shown in Figure 2.5.1 is a typical plot of the

gallium effusion cell temperature as a function of time with the original Eurotherm model 919

temperature controller and model 932 SCR. One startling feature is that the temperature

undergoes periodic variations with a period of about 400 seconds. This is similar to that which

has been observed in other research laboratories. Not only are these periodic variations in

temperature observed, but long term variations in temperature of up to +/- 0.5 °C are also

observed.

To improve the temperature and therefore host element flux stability the older Eurotherm

temperature controllers and SCRs were replaced on the aluminum and gallium cells. A plot of

the typical time dependence of the of the gallium effusion cell using the new Eurotherm model

818s temperature controller and model 832 SCR is shown in Figure 2.5.2. As can be seen the
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periodic temperature disturbances have been essentially eliminated and the total variation in

temperature has been reduced to +/- 0.1 °C. This has resulted in a very stable effusion cell flux

as shown in Figure 2.5.3 where the time dependence of the aluminum cell flux, as monitored by

an ionization gauge which has been rotated into the growth position, is shown over a period of

1800 seconds. The total variation of the flux has be reduced to less that 2 %.

Another effect leading to nonuniform doping and/or growth rate that has been investigated

is the flux transients that are caused by changes in effusion thermal loading when the effusion

cell shutters are opened to initiate growth. The aluminum flux as a function of time is shown in

Figure 2.5.4, as the shutter is opened. As can be seen during the first 200 seconds of growth (-

450 A) the aluminum flux decreased by 14%. Not only are the flux transients observable upon

the initiation of single layer growth but are also seen during superlattice growth. The gallium flux

as a function of time during the growth of a GaAs/A1As superlattice structure is show in Figure

2.5.5. In this growth sequence the Ga shutter was open for 100 sec. and then closed for 100 sec.

Upon each shutter opening in the structure a flux transient is observed. These flux transients lead

not only to slight inaccuracies in the layers thickness, but also to small variation in the doping

densities near the interfaces. At present feed-forward temperature control algorithms are being

developed to eliminate these flux transients.
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3. Charge Transfer and Overflow Device

3.1 Introduction

Of the three devices that comprise the acoustic charge transport (ACT) imager, the charge

transfer device (CTD) plays a major role in its operation, where the CTD collects and stores the

electrons generated in the avalanche photodetector (APD), then transfers this accumulated charge

to the ACT device for readout. The charge storage and overflow properties of the CTD directly

affect image quality, while the transfer capabilities in part determine the speed and fidelity of

image readout.

In this section the progress made on the CTD will be presented. An extensive review of

charge storage device technology is presented, along with its application to the CTD. The

electrical characteristics of the earlier vertical CTD (V-CTD) structures have been explained in

light of other GaAs charge storage devices, as will be described to follow. This work on the V-

CTD is also relevant to the development of the lateral CTD (L-CTD), since vertical charge

confinement is necessary in either architecture. This section will conclude with future goals for

CTD research and imager development.

3.2 Review of Charge Storage Devices

3.2.1 General Concepts for Charge Storage Device

From a review of Si CCDs [3.2.1 ], two modes of charge storage are used in solid state

imaging devices, the surface channel or enhancement approach and the buried channel or

depletion approach. The charge storage operation in either mode is the same; they only differ in

how the charge storage region is created. The features common to both modes are introduced

first, followed by a description of the different charge storage regions in the surface channel and
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buriedchanneldevices.In thefollowing discussions,the storedchargecouldbeeitherelectrons

or holes, however, only electron storagewill be describedsince the APD will operatewith

electronmultiplication.

In commonto both storagemodes,thereexistsa steadystateconcentrationof electrons

in the chargestorageregionor well of the device,wherethis electronconcentrationrepresents

the full well capacityof thestoragedevice.In this steadystate,full well condition thedeviceis

notnecessarilyinequilibrium, i.e.it maybebiased.Throughtheapplicationof appropriatebiases,

a non-steadystate,transientcondition is created where the electrons in the storage region are

removed to yield an empty well ready for charge storage. Electrons can be introduced into the

storage well either by lateral injection or through optical generation within the well, until the

electron concentration reaches its steady state value. Since the storage device is operating under

transient conditions, the storage well will eventually return to the steady state, full well condition

even if no electrons are purposely introduced. This degradation of the charge storage well occurs

either by leakage of charge into the charge storage region, such as the reverse bias leakage across

a p-n junction, or via spurious generation of electron - hole pairs, possibly aided by defects,

within the well. These so-called dark current mechanisms determine the maximum storage time

for charge in the device.

Charge storage devices differ in how the potential well is created. In the surface channel

or enhancement mode device, for example a Si MOS capacitor, charge is stored in an inversion

layer at the interface between a semiconductor and insulator. This inversion layer, in turn, is

surrounded by a depletion layer which acts to confine the electrons both vertically and laterally.

The charge capacity of the surface channel device is determined by the bias applied to the gate
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and by the capacitance of the dielectric. In a buried channel or depletion mode device, charge is

stored in a potential well vertically defined by two space charge regions. These space charge

regions can be produced by p-n junctions, an MOS structure, or a schottky barrier. An example

of an depletion mode device is a GaAs MESFET structure, where the schottky gate contact has

been biased to pinch-off the channel. Table 3. I shows some general advantages and disadvantages

for these two charge storage modes.

Table 3.1: Comparison of Charge Storage Modes for Solid State Imaging Devices.

Enhancement mode

Depletion mode

ADVANTAGES

largest possible charge storage

capacity

simpler variation between Q and C

compared to depletion mode

devices can be tested with no lateral

isolation mechanism, such as a

junction or mesa, because of

depletion layer surrounding the

inversion layer

* doesn't require a good insulator -
semiconductor interface, can use

Schottky barrier or p - n junctions

* fast charge transfer since low
surface states

• can use positive, negative, or both
bias schemes

• more radiation tolerant

DISADVANTAGES

• need the proper insulator -
semiconductor interface,

none easily implemented
currently for GaAs

• slower charge transfer due
to interface states

• other standard problems
associated with MOS

devices in Si due to

presence of oxide
• leakage current often limits

storage time rather than

generation; especially true
for GaAs schottky barriers

• smaller charge capacity

compared to enhancement
mode

* may require an extra

contact to pinch-off or

totally deplete structure

* need device isolation for

test structures, probably

mesa or schottky barriers
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3.2.2 Charge Storage Devices in GaAs

As noted in the previous section, there is no suitable insulator for GaAs that would allow

enhancement mode charge storage devices based on a GaAs - dielectric interface, although

progress is being made using novel structures grown by MBE [3.2.2]. Therefore, GaAs charge

storage devices, such as CCDs, are based on the buried channel approach [3.2.3]. The standard

GaAs CCD is based on a MESFET structure on a semi-insulating substrate, and is typically used

for high speed signal processing and benefits from the easy integration of MESFET based

circuitry with the CCD.

An important consideration for the CTD is the storage time of the device. As discussed

in the previous section, the mechanisms responsible for dark current degradation of a charge

storage time are generation in the depleted well, which for GaAs should be a slow process

because the generation rate is proportional to n_, and leakage currents. In such devices, leakage

is the main well degradation mechanism, because of the small barrier height for schottky barriers

on GaAs coupled with the small generation rate for GaAs. To assess the maximum leakage

current tolerable by the CTD for HDTV applications, a simple calculation has been made

following Fossum et al. [3.2.4], assuming that the storage time is leakage-limited, the maximum

storage time necessary for the CTD is 5 ms (170 frames per second), and the well capacity is l0 6

ecm 2, a value consistent with current Si CCD-based HDTV imagers. This calculation yielded

a maximum leakage current of 1.6 nAcm 2. This value should be compared with the lowest

reported leakage current reported by Fossum et al. for 2DEG-CCDs of 30 )aAcm -2 and a Rockwell

result for a MESFET structure using an undoped AIGaAs layer of 0.01 - 0.1 nAcm 2. Although

the Rockwell value appears encouraging, their results were for large area devices, where surface
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effectsare lesssignificant.For the necessarilysmall areadevices needed in the HDTV imager,

such low leakage currents may not be possible. Therefore, an important issue that must be

addressed for the CTD is development of low leakage current structures.

GaAs CCDs are based on both standard MESFET and high speed HEMT (2DEG-CCD)

structures [3.2.4]. Design constraints represent a trade-off between storage capacity and transfer

efficiency, where increasing the storage capacity yields a large potential trough between th_ wells

which captures signal charge during transfers. This problem is not as severe for Si CCDs because

of the use of oxide passivation between the wells and overlapping gate structures. The minimum

energy of this potential trough between wells increases with increasing channel doping and

decreasing depth of the well from the surface, and decreases with decreasing well separation.

Typical storage capacities for MESFET CCDs are around 1 - 5 x 1011 cm 2, while 2DEG-CCDs

have larger capacities around l x 1012 cm 2. However, because the channel in a 2DEG-CCD is

located very near the surface, the charge transfer efficiency suffers unless the wells are quite

close (- 1/am). This factor may not be important for application of 2DEGs to CTDs, since only

one transfer is necessary between the CTD well and the HACT channel, and resistive gate

technology could be used to remove the inter-well potential troughs [3.2.4]. A greater limitation

to the use of 2DEGs for CTDs is the large leakage current of the schottky barrier gate due to the

high electric field caused by the n ÷ A1GaAs layer [3.2.4], an issue that can be addressed through

the use of p-i-n doped 2DEGs or improved schottky barrier technology.

Charge storage devices have also been developed which are based on depletion mode

storage using p-n junctions, where very long storage times have been observed [3.2.5, 3.2.6].

However, in these devices no free charge is transferred between storage wells, but rather only a
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capacitancechangedue to the depletedchargeis sensed,for use as digital memory devices.

Therefore, these structures are not directly applicable to the CTD.

Although a suitable in,ulator is not readily available for GaAs, enhancement mode devices

have been attempted utilizing the heterojunction discontinuities between GaAs and AIGaAs,

where the AIGaAs barrier is undoped. This structure is used in the heterostructure insulator gate

FET (HIGFET) device. Unfortunately, because of the small energy barriers at the GaAs - AIGaAs

interface (AE c = 0.263 eV, AE c = 0.132 eV for x = 0.3 AIGaAs) [3.2.7], the gate leakage currents

are very large, in low milliampere range at room temperature [3.2.8], which would result in very

small storage times. Kleine et al. [3.2.9] at Purdue have examined enhancement mode operation

of an GaAs - A1GaAs structure, and only observed measurable electron inversion charge below

70 K, where charge loss was limited by thermionic emission across the heterojunction conduction

band discontinuity.

One other GaAs storage approach that has been investigated is a floating gate device,

where charge is stored in an GaAs - A1GaAs quantum well [3.2.10]. However, some question

exist about the mechanism for charge storage in these devices, and that trapping effects may be

responsible [3.2.11].

3.3 Results

3.3.1 Comparison Between Simulations and Experimental Results for CTD-5

The capacitance-voltage (CV) and transient capacitance (Ct) data from the V-CTD

structure CTD-5 has been described based on simulations using Atlas II and HETMOD, a device

simulator made available to Georgia Tech by IBM. Specifically, the storage capacity for CTD-5
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has been calculated and aspects of the CV and Ct data explained. Simulation are currently being

performed on CTD-8, with results to be presented in the next report. This work has been

hampered by the high failure rate of CTD-8 devices, as will be described in section 3.3.2.

The equilibrium band diagrams for the two different V-CTD device structures are shown

in Figures 3.1 (a) and (b), where we assumed originally that the charge storage well was formed

by the AIGaAs layer and either a volume-doped (CTD-5) or delta-doped (CTD-8) p-type layer.

To determine if charge storage could occur in the well, the effect of bias on the electron

concentration in the well was simulated for CTD-5. For charge storage to occur, the free electrons

must be removed from the well. The integrated electron density in the well was 2.7 x 1012 cm 2

in equilibrium. However, no change in electron density, either an increase or decrease, was

observable for readout (surface) biases from -1.0 to 1.50 V. Therefore, the well formed by the

AlGaAs layer and the p barrier layer does not function as a charge storage well. The lack of

charge modulation in this region results from all the applied bias being dropped across the two

depletion layers, so that there is no potential variation and thus no charge modulation within this

well.

However, charge storage was observed in CTD-5 from the Ct measurements described in

previous reports. The question is where in the structure is charge being stored? We can

understand the charge storage mechanism operating in CTD-5 from an analogy to the GaAs

MESFET depletion mode CCD, where an n-type channel is depleted by a suitable bias to pinch-

off. In CTD-5, this channel is the p-type barrier region, with its barriers formed by the depletion

layers of the two p-n junctions. During a Ct measurement, a bias is applied to the readout which

depletes holes from the p-type region; when this bias is removed the p-type region fills with holes
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Figure 3.3.1 (a) Equilibrium band diagram of a delta doped CTD structure (CTD-8).
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via generation and leakage across the p-n junctions. Therefore, this structure acts as a hole

storage device. Using HETMOD a pinch-off voltage and hole storage capacity for CTD-5 were

calculated of 1.49 V and 1.15 x 1012 cm 2, respectively.

The storage lifetime (l/e value) observed in CTD-5 from Ct measurements at bias pulses

slightly less than required for breakdown (+ 4 V) were xs = 3 ms. The lifetime is too short for

the CTD, and is also small compared to literature values on the order of minutes, which indicates

that either the material has a large number of defects which increases the generation rate in the

p-type region or that leakage currents across the p-n junction barriers are large. From previous

work we had identified that the leakage currents for CTD-5 were sizable and resulted from

shunting of the front n-p junction due to excessive alloying from the AuGe - based ohmic

contacts. Therefore, with the improved PdGe contact technology the charge storage time should

increase.

3.3.2 Device Characterization of CTD

Investigation of the failure modes for V-CTDs using CV and conductance-voltage (GV)

measurements have been performed as a function of device area, which isolates the effect of bulk

phenomenon from mesa sidewall surface effects on device breakdown. For the volume-doped

CTD-5, device failure resulted from ohmic contact diffusion into the junction region, as described

previously. Therefore, an alternative ohmic contact technology for the V-CTD was developed

based on PdGe metallization, which was used in all subsequent devices. For the delta-doped

CTD-8, the major contributor to breakdown was a bulk-related effect, which we believe resulted

from electric field induced failure of the Be delta-doped barrier layer due to movement of the

dopant ion [3.3.1]. Future delta-doped structures will utilize low temperature, As rich growth
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conditionsto minimizeBe diffusion, thereby improving the lifetime and operating characteristics

of these devices.

Initial investigation have begun on the effect of traps on CTD operation. The variation

in capacitance with test frequency is being studied, where traps are not expected to contribute to

the measured capacitance with increasing frequency, thus causing a decrease in capacitance.

Storage lifetime measurements have recently been performed in liquid nitrogen (LN2) at

77 K, to study the effect of temperature on leakage currents and generation rates. Significant

enhancements in the storage lifetime for CTD-5 have been observed, with a value of 68 s for a -

1 V bias pulse at 77 K, compared to 2.9 ms for a - 4 V bias pulse at 300K. Future work will

examine the dependence of storage lifetime on the bias pulse, pulse duration, and temperature,

as a precursor to deep level transient spectroscopy setup and testing.

3.3.3 Fast Storage Lifetime Testing System for CTD

An approach for determining the very short charge storage lifetimes, of the order of

microseconds, is to implement a fast transient testing sy stem based on voltage sensing, rather than

capacitance sensing, since the minimum capacitance measurement time is at best 10 Vs, compared

to voltage measurements on a digital oscilloscope with times less than 1 Vs. In such an approach

a voltage proportional to the RC time constant for the CTD is measured after a pulse bias, and

the dependence of device capacitance on time is deconvoluted from the time-dependent RC

product. This approach actually determines a dc capacitance, as opposed to a standard capacitance

meter which measures an ac capacitance.

116



Such a fast voltage transient system has been modeled at GTRI using the circuit

simulationprogram PSPICE,to definea test setupwherethe CTD capacitanceand a known

resistancedeterminethe RC time constantof the measurementsetup,ratherthan anyparasitic

capacitancesandresistancesassociatedwith the setup.This systemhasrecentlybeensetup,and

is now beingtestedat GTRI.

3.3.4 Summary and Future Work

Significant progress has been made in our understanding of the operation of previous

CTDs. This knowledge will allow us to more effectively design device structures using the

HETMOD and Atlas II simulators for subsequent growth , fabrication, and testing. From the

review of GaAs charge storage devices and the experimental results on CTD-5, an important need

for long storage time CTDs is a low leakage current device structure, which can be realized by

a high quality GaAs - insulator interface. Such a structure would benefit both depletion mode

devices by reducing leakage currents, and also allow the fabrication of enhancement mode

devices. Such a technology would also find application in many other areas of GaAs device

technology. Work will also begin on construction of a deep level transient spectroscopy system

for enhanced characterization of CTDs, APDs, and general MBE grown material.
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4.0 Avalanche Photodiode Development

4.1 Theory of Impact Ionization and Modeling of Avalanche Photodiodes

One of the keys to developing an accurate model of an avalanche photodiode for device

simulation is to formulate the impact ionization transition rate correctly. Most early theoretical

studies of the impact ionization rate have limited validity since they neglect the complexity of

the phonon scattering processes and the energy band structure of the host material. Numerical

transport models based on the ensemble Monte Carlo method have been more recently employed

[4.1. I-4.1.3] which include the full details of the band structure based on either a pseudopotential

or k*p calculation. The impact ionization transition rate is typically formulated within these

numerical transport models using a parameterized expression called the Keldysh formula [4.1.4].

The Keldysh formula contains two parameters, p and Eth, which are very difficult to determine

from first principles. Both of these parameters are selected such that the calculated ionization

rate agrees well with experimental measurements. Often, more than one set of parameters can

reproduce the same ionization rate in a given material. Subsequently, the nature of the ionization

process cannot be uniquely determined from use of the Keldysh formula alone. In addition, the

Keldysh formula is derived assuming several simplifying assumptions. These are that the

transition is calculated assuming a direct semiconductor with parabolic bands for all of the

carriers, no k-dependence is considered, and the overlap integrals are constant for all initial

energies.

There have been some recent attempts by several investigators to address the limitations

imposed by the use of the Keldysh formula [4.1.5-4.1.9]. During the course of this project, we

have developed a completely numerical study of the interband impact ionization transition rate
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for both bulk silicon and GaAs [4.1.8,4.1.9]. The ionizationtransitionrate is evaluatedusing

a wavevectordependent,semiclassicalformulationof the transitionrate.The transitionrate is

determinedusingFermi'sgoldenrule from a two-bodyscreenedCoulomb interactionassuming

energyand momentumconservation.The overlapintegralsin the transitionrateexpressionare

determinedthroughuseof numericallygeneratedwavefunctionsdeterminedviaak*p calculation.

The full detailsof the calculationand the model are reportedin references[4.1.8] and [4.1.9]

whichareenclosedwithin theappendix.It is found from thesecalculationsthatthetransitionrate

is greaterfor electronsoriginating within the secondconductionbandthan the first conduction

band and that the thresholdcanbe classifiedas relatively soft in both GaAs and silicon. It is

further found that the thresholdis somewhatharderin silicon than in GaAs.

Thoughthenumericaltreatmentof the interbandimpactionizationtransitionrateis useful

it is highly computationallyintensive.As suchcalculationsof thetransitionratetypically require

manycpuhours.In anattemptto reducethecomputationaldemandsnecessaryfor a completely

numericalformulationof thetransitionrate,wehaveinvestigatedtheusefulnessof analternative

analyticalformulationof the transitionrate [4.1.10].The new wavevectordependentanalytical

formulationwasfirst developedby Quadeet al. [4.1.11]. The detailsof their modelhavebeen

sketchedout in reference[4.1.10] which is enclosedwithin the appendix.It is found that the

wavevectordependentmodelof Quadeet al. producesvery similar resultsto thoseobtainedwith

the completelynumericalmodel for somequantities.Specifically,both modelspredict that the

effectivethresholdfor impactionization in bothGaAsand silicon is quite soft, that themajority

of ionizationeventsoriginatefrom the secondconductionband in both materials,and that the

transitionrate is wavevectordependent. Nevertheless,thereare'significant limitations to the
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usageof theQuadeformula for modelinginterbandimpact ionization.Thesearethat theQuade

formula does not accuratelyreproducethe quantumyield data for bulk silicon, it requires

determinationof anew parameter,relatedphysicallyto theoverlapintegralsof theBloch states,

and fails to account for any wavevector dependence of the overlap integrals themselves. As such

the transition rate can be seriously overestimated at those points within the Brillouin zone for

which nearly vertical, small change in wavevector, transistions occur. Based on these results, we

have concluded that the Quade formula may not be truly useful in avalanche photodiode

simulation and have retained the completely numerical technique for use in the next generation

of APD device simulators.

In addition to our work on developing an improved theory of interband impact ionization,

we have further worked on refining our APD device simulator as well as work on studying the

performance of APD devices. Towards this end, we have begun work on tailoring our existing

hydrodynamic simulator to study APD structures. This work has progressed along two related

directions. First, we have fashioned the simulator for studying cylindrical geometries. This has

been used to study a separate absorption, multiplication APD used by Bell Northern Research for

iightwave communications systems. In addition, we are presently investigating the inclusion of

nonparabolicity effects into the hydrodynamic model to greatly enhance its accuracy for high

energy devices. Two different formulations are being investigated, a simple nonparabolicity model

and a power law model. Though the power law model offers somewhat better accuracy at high

energy, its use is somewhat frustrated by the need to evaluate some of the moments numerically.

We expect that we will soon incorporate the nonparabolicy technique into our existing

hydrodynamic simulator enabling its usage for APD device simulation and development.
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4.2 Characterization of Avalanche Photodiodes

During this report period, a paper entitled "Gain Properties of Doped GaAs/AIGaAs

Multiple Quantum Well Avalanche Photodiode Structures" was submitted and accepted for

publication in the Journal of Applied Physics Letters. The paper presented experimental

confirmation of a structure-induced carrier multiplication in the low-voltage regime due to

interband impact ionization in the MQW APDs. This was contrasted with data from a

conventional p-i-n APD where no such gain existed. The details of the experiments and the

results were described in the previous report.

Recent work has concentrated on performing several device simulations to help gain some

insights into the physical phenomena that take place in p-i-n's, undoped, and doped MQW

structures. Various simulations using the Gummel and Newton's methods were used to calculate

electric field distribution, valence and conduction band potentials and carrier concentrations, as

well as electron and hole mobilities throughout the structure.

Figures 4.2.1 (a) and 4.2.1 (b) show the electric field profile and band potentials for a p-i-n

structure. Both the p- and n- layers are heavily doped (lxl0 TM cm3), while the i-layer is made up

of intrinsic GaAs. Note the two peaks in the field plot which are the result of band bending at

the edges due to bandgap narrowing caused by heavy doping. Figures 4.2.2(a) and 4.2.2(b)

present the carrier concentrations and mobilities throughout the p-i-n structure. Electron and hole

mobilities are lower in the doped GaAs regions due to ionized impurity scattering.

Figures 4.2.3 and 4.2.4 show the results of the simulation when applied to an undoped

GaAs/A1GaAs MQW structure with four built-in wells, while Figure 4.2.5 show the effect of
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Figure 4.2.1 (a) Electric field profile in a pi-n photodiode structure. (b) Band diagram for the

p-i-n photodiode structure.
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the MQW APD structure.
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Figure 4.2.5 Simulated electric field and band diagrams tbra MQW structure with a 50 A wide

p-n junctions in the center of each GaAs well.
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introducing two 50/_ p-n doping layers in the center of every GaAs well. Note, how in Figures

4.2.5(a) and 4.2.5(b), the doping in the wells creates peaks in the electric field and band bending

in the potential wells which help increase the kinetic energy of the carriers and thus enhances

impact ionization. This clearly illustrates the advantages of using doped MQW structures to

greatly enhance the gain characteristics of such devices over that of undoped MQW APDs. The

simulation results shown in Figures 4.2.6 and 4.2.7 show a quantitative measure 79f the

relationship between the electron energy gain as a function of the doping density and the doping

layer width. In Figure 4.2.6, the p and n doping layer widths were held constant at 50/_, while

the doping concentration was doubled (1.5x10 _8 to 3.0x10_8). The resulting gain in energy has

increased by two fold from about 0.06 eV in Figure 4.2.6(a) to 0.12 eV in Figure 4.2.6(b). In

Figure 4.2.7, the same simulation was conducted holding the doping density constant while

increasing the p and n layer widths from 100/_ to 150/_. Once again, the energy band offset has

doubled from about 0.45 eV in Figure 4.2.7(a) to 0.9 eV in Figure 4.2.7(b) resulting in a

substantial increase in the kinetic energy of the electrons.

The simulation shown in Figure 4.2.8 was conducted as an attempt to study the impact

of doping imbalances on the field profile and the band structure. Such a problem occurs quite

frequently during material growth and is not easily controlled. In this case, we chose the n

doping in every GaAs well to be 20% higher than the adjacent doping in the p layer. The

resulting electric field profile, as shown in Figure 4.2.9, gradually decreases. This results in

partially depleted stages as shown in the band diagram in Figure 4.2.10. Partially depleted and

fully undepleted stages in a MQW APD play a major role in limiting the gain characteristics of

the device at low bias. Therefore, in order to fully maximize gain at low bias, it is very important
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to be able to deplete as many stages as possible which requires the need for precise doping

control during MBE growth. As was previously reported, we were recently able to successfully

fabricate several 10-period doped-well APDs that demonstrated full depletion below avalanche

breakdown. However, when the number of built-in GaAs wells was increased to 25, the APDs

displayed only partial depletion. This prompted us to try and determine the threshold limit beyond

which further depletion ceases to occur. Therefore, we are currently in the process of growing

and fabricating additional doped-well APDs where the number of stages in the avalanche region

ranges from 10 to 25. This will help us determine the optimal width and periodicity of the

depletion region which will maximize the gain at low bias in these structures.

For future work, we will extend our simulation further to gain more insights into the

properties of these structures at low and high bias when impact ionization becomes important.

This will eventually lead to constructing better theoretical models of the gain, noise and

bandwidth characteristics of the APD which can be used to analyze our existing experimental

data and enable us to use such models as a basis for fabricating high performance APD

structures.
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: Ensemble Monte Carlo calculations of the electron interband impact ionization rate in bulk GaAs

are presented using a wave-vector (k)-dependent formulation of the ionization transition, rate. The

transition rate is evaluated through use of numerically generated wavefunctions determined via a

k.p calculation within the first two conduction bands at numerous points within a finely spaced

three-dimensional grid in k space. The transition rate is determined to be greatest for states within

the second conduction band. It is found that the interband impact ionization transition rate in bulk

GaAs is best characterized as having an exceedingly "soft" threshold energy. As a consequence, the

dead space, defined as the distance over which the ionization probability for a given carrier is
assumed to be zero, is estimated to be much larger than that estimated using a "harder" threshold.

These results have importance in the design of multiquantum-well avalanche photodiodes.

I. INTRODUCTION

The probability that an interband impact ionization event

will occur depends upon the likelihood that a carrier will first

drift to an energy equal to or greater than the band-gsp en-
ergy, often referred to as the threshold energy, and then suffer

an impact ionization event before phonon scattering pro-

cesses relax it back to an .energy below threshold. Mostof
the early analytical theories of interband impact ionization 1'2

concerned themselves with determining the probability that a
carrier survives to threshold assuming that it would ionize

immediately afterward. Such theories are said to assume a

"hard threshold" for interband impact ionization.

The hard threshold model was not limited to the early
analytical theories. More advanced theories 3'4 were formu-

|ated using a hard threshold model for interband impact ion-
ization; however, more recent numerical studies 5'6 as well as

analytical theories _'s have called this assumption into ques-
tion. Interestingly, in most of the numerical theories em-

ployed in the past the calculated impact ionization rates often
agree well with experimental results for some semiconductor

materials using either a hard or "soft" threshold model, v This

is due to the fact that most numerical formulations rely on a

parameterized expression, called the Keldysh formula, 1° to

describe the impact ionization transition rate. The Keldysh

formula contains two parameters, P and Era, which are very

difficult to determine from first principles. Eth corresponds to

the threshold energy for impact ionization while P is some

measure of how strong the impact ionization transition rate is

for carriers with energies greater than Eth. A small value of
P then correspondsto a soft threshold since the transition

rate is relatively small near the threshold and increases only
slowly thereafter. In contrast, a hard threshold is character-

ized by a large value of P. 'l_pically, both P and Eth are

selected such that the calculated impact ionization rate is in
agreement with experimental measurements. As such, more

than one set of parameters can often reproduce the same

ionization rate in a given material. Tang and Hess 9 have

shown that the calculated impact ionization rate in bulk sill-

con, based on an ensemble Monte Carlo mode ! including the

Keldysh formula, agrees well with existing experimental
data using either a soft or hard threshold model.

Kane I_ made the first attempt to improve the impact ion-

ization transition rate formulation by directly evaluating the

pair cross section using'pseudopotential-generated energy
bands and wave functions "for bulk silicon. In his formula-

tion, Kane calculated the transition rate for different wave

vector (k vector) states of comparable energy and averaged

these rates to determine an energy dependent transition rate.
More recently, Sano eta/. 12'!3 and Bude and Hess 5 have in-

vestigated the threshold energy in silicon and GaAs using

numerical techniques. Their work indicates that the threshold

is highly k dependent and that the relative softness of the

threshold originates from the k dependence of the impact
ionization transition rate.

New theories of interband impact ionization have been

presented which treat the problem either semiclassically s,14

or quantum mecahanically.lS-! _. The quantum-mechanical

works have demonstrated that the threshold energy is always

relatively soft owing to energy broadening effects arising

from the electron-phonon interaction. In the quantum-

mechanical formulations, a Lorentzian is substituted in place
of the energy conserving delta function which leads to a

broadening of the threshold state itself. Bude and

co-workers Is have demonstrated that through inclusion of

quantum-mechanical broadening, a threshold state cannot
rigorously be defined since the Lorentzian does not demand

strict energy conservation over short time scales. As a result,

a carrier can impact ionize even if its energy is less than the

energy gap. Energy broadening acts then to inflate the impact
ionization rate neat threshold.

Similarly, even the semic, lussical models predict that the
ionization transition rate in bulk silicon is relatively low

leading to a soft thresholdlike behavior. Owing to the fact

that the ionization transition rate is calculated to be signifi-

cantly lower than the competing phonon scattering rate, these

models predict that the electrons drift to high energies, on

average, before suffering an impact ionization event. As a

974 J.Appl.Phys.78 (2), 15 July 1994 0021-8979/94/76(2)/974/8/_.00 ' 0 1994 AmericanInstlt_e of Physi_
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result, the average energy of the electrons is expected to be
quite high at high-electric-field strengths in contrast to what
is predicted using a hard threshold model. Recent experimen-
tal measurements using x-ray photoemission spectroscopy
(XPS) is indicate that the threshold for interband impact ion-
ization in bulk silicon is exceedingly soft. These results fur-

ther indicate that the ionization rate may have multiple
ranges of behavior which is consistent with theoretical
predictionss'.4 that the second band dominates the impact
ionization process in bulk silicon.

Aside from the obvious importance'of _mprovmg the un-
derstanding of interbsifiiJimpact ionization, knowledge of the
nature of the threshold energy in different materials is useful
in modeling advanced avalanche photodiode (APD) designs
which utilize heterostructures and multiple quantum wells to
enhance the eleetron ionization rate:9-_In these devices the

presence of the conduction-band-edge discontinuity formed
at the heterostructure interface provides a kinetic energy
boost to electrons injected into the narrow-band-gap layers
from the wide-band-gap materials. The larger the con-
duction-band-edge discontinuity is, the greater relative effect
it has on the electron ionization rate. This depends th'ough
upon how soft the threshold is. If the threshold is relatively
hard, the conduction-band-edge discontinuity can greatly in-

fluence the ionization rate by providing sufficient.energy to
promotethe electron from below thresholdto above thresh-
old, On the other hand, if the threshold is exceedingly soft,
the presence of the conduction-band-edge discontinuity may
not have as much of an effect since most of the carriers must

attain very high energies before impact ionizing. As a result,

the discontinuity may contribute'relatively little to the over-
all heating of the electron distribution.

Since interband impact ionization is a threshold process,
a carrier launched near the band edge, either initially or after
suffering an ionization event, must drift for some time to

acquire sufficient kinetic energy in order to impact ionize.
The ionization probability then is.necessarily equal to zero
for some distance for both the generated carrier and the ini-
tiating carrier immediately following an ionization event.
The distance over which the ionization probability is as-
sumed to be zero following launching from the band edge is
often referred to as the dead space. The dead space can be of
importance in multiquantum-weli structures since if the well
widths are much smaller than the dead space distance, then
the 'ionization rate may be appreciably reduced, leading to
little enhancement. Recently, the electron and hole ionization
coefficients were measured in a series of GaAs/AIGaAs mul-

tiple quantum wells with varying well and barrierwidths. Z;It
was found that in the narrow well width structures (<100 A)

there was virtually no enhancement of the experimentally
measured electron to hole ionization rates ratio, while in
wider well structures there was a significant increase in the
ionization rates ratio. These 'results may be related to the
dead space in the ionization process.

In this article we present detailed calculations of the
electron-initiated impact ionization rate in bulk GaAs using a
semiclassical formulation of the interband impact ionization
transition rate. The transition rate is determined using For-
mi's golden rule from a two-body screened Coulomb inter-

action assuming both energy and momentum conservation
for the first two conduction bands of GaPs. These results are

then incorporated into an ensemble Monte Carlo simulator to

calculate the total impact ionization rate as a function of
applied electric field in bulk OaAs. Aside from the ionization
transition rate and the total impact ionization rate, the dead
space for electron-initiated impact ionization is also calcu-
lated and compared to results based on a relatively hard
threshold model. The implications of an exceedingly soft

threshold for impact ionization in GaAs are discussed in re-
lation to multiquantum-well devices. The details of the
model are summarized in Sec. II. The calculated results are

presented in Sec. HI while conclusions ,,re drawn in Sec. IV.

II. MODEL DESCRIPTION ..

The details "of the model have been exhaustively re-
viewed in a previous work.t_. Nevertheless, for completeness,
the salient features of our model are briefly outlined here.
The total impact ionization rate is determined using an en-
semble Monte Carlo ,_imulHiofi which includes the full de-
tails of the first two conduction bands of GaAs and the nu-

merically generated semiclassical impact ionization transi-
tion rate. The Monte Carlo simulator used in the calculations
is based on the original work of Shichijo and Hess, _ with the
improved phonon scattering technique of Chang et al. _ and
the improved band-structure interpolation technique of FIS-
chetti and Laux._ The material parameters used in the simu-
lation are taken from Refs. 27 and 28. The estimators used in

the simulation are discussed at length in Ref. 28.
The high-energy scattering rate is assumed to be domi-

hated by deformation potential scattering. The deformation
potential scattering rate is calculated using a full order time-
dependent perturbation theory expansion assuming that the
deformation potential is a constant, independent of energy._
Although the assumption of a constant deformation potential
may not be strictly valid, r_it is standard and commonly used.
The'deformation potential scattering is determined by direct
integration over the numerically generated density of states
for both bands. At the points in k space at which both bands
overlap, the deformation potential scattering depends, of
course, on the density of states within both bands. During the
course of the Monte Carlo simulation, the electrons can
transfer then from one band to the other through the action of
the deformation potential scattering.

Impact ionization is incorporated into the Monte Carlo
model using the semiclassical, wave-vector (k)-dependent
transition rate given by Ridley. z9 The matrix element is as-
sumed to be a screened Coulomb interaction between two

electrons.14The transitionrate is evaluatednumerically by
integrating o¢;er the full Briliouin zone. Several million pos-
sible final states are sampled for each integration to ensure

convergence and accuracy. The overlap integrals present in
the matrix element are determined by diagonalizing a 15X 15
k.p I'lamiltonian.3° The values of the overlap integrals match
closely to those presented by Bun et al.31The transition rate
is determined for each mesh point within a finely spaced, 916
point, k-space grid spanning the reduced zone u of the first
Brillouin zone. Additional points are also used for interpola-
tion purposes raising the total number of mesh points at
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t

which the transition rate is calculated to 1419. The transition

rate is determined for both conduction bands at each of the

mesh points. The mesh employed for the impact ionization

transition rate is the same as that for the energy interpolation
used 0uring the course of the Monte Carlo simulation. 2z

The instantaneous electron-impact ionization transition

rate is determined both from its energy and k vector. When

the simulated electron's energy is less than the energy band

gap, the electron cannot impact ionize and its flight is deter-
mined in the usual manner. 32 When the simulated electron

drifts to an energy greater than or equal to the energy band

gap, its ionization transition rate is determined using the k

space mesh. The eight mesh points nearest to the components
of the simulated electron's k vector are first determined. If

the ionization transition rate is nonzero for all of the eight

mesh points then the transition rate of the simulated electron
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zone. The ionization transition rate b plotted vs kz and k_, holding k_ fixed at
0,0. Those points which are shown to have a transitioq rate equal to the
minimum of the vertical axis genie have nO threshold 'and hence have I zero

transition rate. Owing to the logarithmic _tle nsed in the figure, these

points are represented as having a minimum transition rate for convenience.
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FIG. 3. Total culculsled electron phoaon g-.altering rate used in the anti

threshold and hard threshold simularions. The high-energy scattering rate for

the soft threshold case is matched at 0.5 ¢V with {he phonon gCaltering rate

calculated from Fermi's golden rule, while the rate for the hard threshold
case is matched sl 0.8 eV.

b determined by linearly.interpolating between the values st

each mesh point. If one or •more of the mesh point values is
zero, then the transition rate for the simulated electron is

chosen equal to that of the nearest k point: The impact ion-
ization transition rate determined in this manner is then

added to the total phonon scattering rate corresponding to the

energy of the simulated electron. A_ in standard Monte Carlo
algorithms, a random number is thrown to determine if the
carrier iS scattered. Given that the carrier scatters, a second

random number is generated to determine the particular

event that occurs out of all the possible events at that energy
and k vector. .....

The calculated interband impact ionization transition rate
for the first two conduction bands of bulk GaAs as a function

of kx and ky holding k: fixed at 0.0 within the reduced zone
is presented in Figs. 1 and 2. As can be seen from compari-

son of these two figures, the transition rate is significantly
greater in the second conduction band than in-the first. The

maximum transition rate in either band is only slightly

greater than 1013 s -l, significantly less than the competing

phonon scattering rate at these energies. The probability that

an ionization event will occur at any given time, relative to a

competing phonon scattering event, is then quite small. As a

reshlt, an electron can drift for some time to very high energy
before suffering an impact ionization event.

IlL CALCULATED RESULTS ....

At high carrier energies ,the phonon scattering rate is

assumed, as stated above, to be dominated by deformation

potential scattering. The scattering rate at these energies b

determined by directly integrating over the final density

states calculated from _e. numerically generated band struc-
ture including collision broadening. A single deformation po-

tential constant is selected in order to match the scattering
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rate calculated from Ferret's golden rule at a specific energy.

Since the impact ionization coefficients are very sensitive to

the total scattering rate, a small change in the total scattering

rate will lead to a dramatic change in the impact ionization

coefficients. Figure 3 shows the total electron phonon scat-

tering rates with the deformation potential scattering rate

matched to the scattering rate calculated from Fcrmi's golden

rule at 0.5 and 0.8 eV, respectively. As is discussed later, the

lower scattering rate, that matched at 0.5 eV, results in a

softer threshold for the impact ionization process, while the

higher scattering rate, that matched at 0.8 eV, results in a

harder threshold. It should be noted that there is some arbi-
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trariness in the total scattering rate since the deformation

potentials are not fully known as a function of energy. "l_pi-
cally, the scattering rate is adjusted such that the calculated

carrier drift velocities agree with the experimental measure-
ments; however, the drift velocity is less sensitive to the
scattering rate than the impact ionization coefficients. In
these calculations, both sets of scattering rates show good
agreement with the experimental saturation carrier drift ve-
locity within the error tolerance of the Monte Carlo tech-

nique. Therefore, either total scattering rate is plausible.
An energy-dependent impact ionization transition rate

can also be derived from the k-dependent rate by performing
an additional integration over the initiating electron k-vector

space, normalized by the density of states. The result is plot-
ted as a function of initiating electron energy in Fig. 4, along
with the rates using the Keldysh formula with two sets of P

and Eth ; P=0.02 and Eth--1.85 eV, as well as P=0.2 and
E,h= 1.42 eV. Multiple sets of P and EIh may be found by
fitting the calculated impact ionization coefficients to the ex-
periment. The first set of values of P =0.02 and Eth---- 1.85 eV
is chosen so as to match the Keldysh rate as close as possible
to the energy-dependent rate derived from the k-dependent
rate. Tile value of 0.02 for P is in the range of values which
typically corresponds to a soft threshold condition. Another

set of parameters for the Keldysh formula, P=0.2 and
Eth = 1.42 eV, is chosen to compare the difference between
the hard and soft threshold models.

The impact ionization coefficients calculated using the
k-dependent impact ionization transition rate, the Keldysh
formula with P=0.02 and Eth=1.85 eV, and the Keidysh
formula with P =0.2 and E,h= 1.42 eV along with the experi-
mental measurements of Bulman et al.33are plotted in Fig. 5
at an electric-field direction of [100]. The lower total scatter-
ing rate as shown in Fig. 3 is used in the calculations of both
the k-dependent model and the Keldysh formula with
P=0.02 and Eth=l.85 eV. In the case of the Keidysh for-

mula with P=0.2 and Eth=l.42 eV the higher total scatter-
ing rate must be used due to the higher impact ionization
transition rate and the harder threshold present in this case in
order to agree with the experimental results. As can be seen
from Fig. 5, the k-dependent calculations match the experi-
ment fairly well throughout the range of applied electric-field
strengths plotted here. This is excellent considering there is
no adjustable parameter used in the model for the impact
ionization transition rate. The only ambiguity in this case

appears in the scattering rate. The calculated results using the
Keldysh formula for the impact ionization transition rate,
within the otherwise identical Monte Carlo model, are in-

cluded for comparison. With two adjustable parameters, P
and Eth it is possible to have better agreement with the ex-
periments than the k-dependent model, as shown here for the
case of P=0.02 and Eth--1.85 eV. The results calculated us-
ing the k-dependent model are closer to the results calculated
by the Keldysh formula with a sorer threshold as expected,
since the k-dependent model also has effectively a very soft
threshold.

The effect of the second conduction band on the impact
ionization coefficients in bulk GaAs for all three impact ion-
/zation transition rate models has also been investigated. Fig-

ure 6(a) shows the percentage of electron ionization events
originating from the first and second conduction bands

within the k-dependent model. Nearly 100% of the impact
ionization events originate from the second conduction band
clue to the fact that the impact ionization transition rate is
much higher in the second conduction band. The percentage
of electron ionization events originating from the first and
second conduction bands for both Keldysh formula models
are plotted in Figs. 6(b) and 6(c). In contrast to the
k-dependent model, more ionization events originated from
the first conduction band in both cases. This can be under-

stood since in the Keldysh formula, the impact ionization
transition rate is isotropic and no distinction is made between
states in the first and second conduction bands. Therefore,
the electrons have the same ionization probability at a given
energy from the first conduction band as from the second
conduction band in the Keldysh formula model, while in the
k-dependent model the ionization probability is typically
higher in the second conduction band than the first conduc-

tion band even at the same energy. Hence, it is not surprising
that the Keldysh formula model predicts that more events
will occur from the first conduction band than the

k-depeodent model does. As the threshold becomes lower
and harder, more ionization events occur in the first conduc-

tion band. Therefore, the Keidysh formula model will predict
very different physical results if a different set of P and Eth
is used. _

It is interestingto examine the impact ionization coeffi-
cients along different applied electric-field directions. The
directional dependenceof the impact ionization transition
rate is incorporatednaturally in the k-dependentformulation.
Calculations of the electron-impact ionization coefficient at
different applied electric field directionsof [100], [110], and
[111] show no field directional dependenceof the impact
ionizationcoefficientseven with the k-dependentimpact ion-
ization tiansition rate.These resultsagree with previouscal-
culationsby Brennan and Hess34using the Keldysh formula
and the calculationsreporledhere using both Keldysh for-
mula models.As shown in Fig. 6(a), almost all the impact
ionizationeventsoriginatefrom the second conductionband
using the k-dependentformulation. Since the impact ioniza-
tion transitionrate in the second conduction band,shown in
Fig. 2, is higher and more uniform than the rate in the first
conductionband, little electric-field directional dependence
of the electron-impactionization coefficientsis expected.

The electron number density functions,defined here as
the productof the electron densityof statesfunction and the
electron distributionfunction, are plotted in Figs. 7(a)-7(c)
for all three models at an applied electric field of 250 kV/cm.
The number density functions at the applied electric field of
500 kV/cm for all three models are presented in Figures
8(a)-8(c). Both the k-dependent model and the Keldysh for-
mula model with the softer threshold predict similar electron
distributions. The second peak in the distributions at an elec-
tric field of 500 kV/cm for the k-dependent model and the
Keldysh formula with softer threshold indicate many elec-
trons occupy the second conduction band at high applied

electric fields. In the Keldysh formula model with the harder
threshold, the distribution is much cooler. In this case, fewer
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FIG. 7. (a) The electron number function, defined as the product of the

electron density-of-st•tea function and the electron distribution function, at

the applied electric field of 250 kV/cm calcuisted using the k-dependent

model. Notice the significant number of electrons within the high-energy tail

of the distribution, in the k-dependent model owing to the ultrasoft thresh-

old present, the impact ionization proce•s does not Intricate the high-energy
tail of the distribution. (b) The electron number function, defined as the

product of the electron density-of-slates function and the electron distribu-

lion function, •l the applied electric field of 250 kV/cm calculated using Ibe

Keldysh formula model with PB0.02, £,,,,1.8.5 eV. As in the k-dependent

model, the high-energy tail of the electron distribution is not tntncaled due

to the soft threshold in the ioni,+,tion process. (el The electron number

function, defined u the product of the electron density-of.st•lea function

and the clue•on distribution function, It the applied electric field of 250

kVIcm calculated using the Keldysh formula modcl with P-0.2, £i,'= 1.42

eV. Hotice that few electrons exist within the high-energy tail of the distri-

bution in Ibis case. The pre_n_e of a hard threshold acts to sharply Iruncale

the high-energy tail st relatively low carrier energy.
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FIG. 8. (•) The electron number function, defined as the prod•el of the

electron density-of-states function and the electron distribution function, •t

the applied electric field of .400 kV/cm calculated using the k-dependent

model. The second peak in the distribution is due to caniers within the

second conduction hand. Notice that there is • significant population of

electrons II very high energy due to the presence of • very sofi threshold for

impact ionization. (b) The electron number function, defined us the product

of the electron density-of-states function end the electron distribution rune-

lion, el Ibe applied electric field of 500 kV/cm cak:ulaled using the Keldysh

formula model with P,-0.02, E_u,_ 1.8S eV. As in the k-dependent case, the

I¢cond peak in the dislribulion is due to carriers within the second conduc-

lion band. Many electrons survive to higb energy in this case owfn 8 to the

very soft threshold for impact ioni_tion. (c) The electron number function,

defined as the product of the electron density-of-slates function and the

electron distribution function, •l the applied electric field of 500 kV/cm
calculated using the Keldysh formula model with P,,.O.2, Eeu,=l.42 eV.

Owing to the relatively hard threshold used in this case, the high-energy tall

of the distribution is effectivcly Inane•ted.
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FIG. 9. (a) Scatter plot of electron energy and the location at which impact

ionization occurs at the applied electric field of 333 kV/cm based on the

k-dependent model. The dead space can be estimated by the distance men-
lured from zero to the first ionization event. In this case, this distance is

_90.0 nm. Notice that the average energy at which an impact ionization

event occurs is quite high, always greater than 2 eV and in many cases

closer to 3-4 eV. Co) Scatter plot of electron energy end the location at

which impact ionization occurs at the applied electric field of 333 kV/cm

based on the Keldysh formula model with P=0.02, Eel- 1.85 eV. As in the

k-dependent case, the average energy at which an impact ionization event

occurs is relatively high and the dead space h relatively long. (c) Scatter

plol of electron energy and the location at which impact ionization occars at

the applied electric field of 333 kV/cm based on the Keldysh formula model

with P:0.2, Ee,=l.42 eV. Notice that the average energy at which an im-

pact ionization event occurs is relatively low. Many ionizations occur at

energies less than 2 eV and few carriers survive to energies much greater

than 2 eV. Notice also that the dead space is predicted to be much less than

in the k-dependent model, in this case, the dead apace b --50.0 nm almost

half of that predicted for the k-dependent model.

electrons survive to high energies. This is, of course, due to
the fact that in the hard threshold model, once a carrier at-

tains threshold it is highly likely to suffer an impact ioniza-

tion event. As a result, few carriers drift to energies signifi-
cantly higher than the threshold.

The electron energies and l_ositions at which impact ion-

izations occur are plotted in Figs. 9(a)-9(c) for all three

models at the applied electric field of 333 kV/cm. Each dot
in the figures represents an impact ionization event that.oc-

cured at energy E and distance D from launch. The electrons

are all launched initially from zero energy. From inspection

of the figures, the electron-impact ionization dead space can

be estimated at each specific applied electric field. Notice

that the dead space predicted by the harder threshold model
is the shortest among the three models. This is because in the

harder threshold model electrons can impact ionize at much

lower energies [Fig. 9(c)] due to the lower threshold and the

higher impact ionization probability once the carrier reaches
the threshold. The distance traveled for the electrons to reach

the ionization energy thus is much shorter. The k-dependent

model has the longest dcad space. In the k-dependent model

most impact ionizations occur in the second conduction
band, while in the Keldysh formula model electrons can

more easily impact ionize within the first conduction band.

Since electrons can only transfer to the second conduction

band through scattering events in our simulation model, it

takes a longer time and, thus, a _r,nger distance, f(,: ;he elec-

trons to impact ionize. Due to the use of a higher and softer

threshold, electrons need reach higher energy to impact ion-

ize. This results in longer dead spaces than that reported in
Ref. 35.

IV. CONCLUSIONS

In this article we have presented an analysis of the inter-

band impact ionization rate in bulk OaAs using a semiclas-

sical, k-dependent, numerical formulation of the impact ion-
ization transition rate. It is found that the transition rate is

substantiallyhigherwithinthe second conductionband than

the firstconductionband.As a result,theoverwhelming ma-

jorityof electronsimpact ionizefrom stateswithinthe sec-

ond conductionband thanfrom thefirstconductionband,in

contraslto what ispredictedby a hard threshold,Keldysh

formulamodel. Inaddition,the numerical,k-dependentfor-

mulationof the transition rate predicts that the electrons sur-

vive to very high energy, on average, before suffering an

impact ionization event. Again, this is vastly different from
that predicted by the hard threshold, Keldysh formula model

wherein most of the electrons ionize at much lower energies.

Interestingly, both the hard threshold model, and the soft
threshold models, i.e., either a soft threshold, Keldysh for-

mula model or the numerical, k-dependent model, can be

fashioned, by adjusting the total phonon scattering rate, to

match the experimental results exceedingly well. Though the

hard and soft threshold models require different total phonon

scattering rates in their description, the two different rates

examined here both lead to acceptable predictions of the
steady-state electron drift velocities. As such, it is difficult

under present circumstances to definitively choose whicl_

scattering rate is the most appropriate. A more detailed
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analysis of the high-energy scattering rate, taking into ac-
count the energy dependence of the deformation potentials,
needs ultimately to be done. Nevertheless, it is expected that
the k-dependent transition rate formulation is far more accu-
rate than the Keldysh formula. In order that the k-dependent
transition rate calculations agree with the experimental inca-
surements, the phonon scattering rate would have to be lower
than that usually quoted for a hard threshold model.

If the threshold for interband impact ionization is indeed
very soft in GaAs, as indicated by the present k-dependent
transition rate calculations, the dead space for impact ioniza-
siGnis then significantly larger than previously estimated. A
longer dead space may lead to different predictions of the
electron-impact ionization enhancement in GaAs/AIGaAs
multiquantum-well (MOW) structures. As a result, the bpti-
real well and barrier widths of these devices may be quite

different from those predicted using a harder threshold
model. We are currently investigating how an ultrasoft
threshold, as predicted by the k-dependent transition rate cal-
culations presented here, would effect the predicted electron
and hole ionization rates in MOW structures. These results

will be presented elsewhere.
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The electron interband impact-ionization rate for both silicon and gallium aTsenide is calculated

using an ensemble Monte Carlo simulation with the expressed purpose of comparing different

formulations of the interband ionization transition rate. Specifically, three different treatments of the

transition rate are examined: the traditional Keldysh formula, a new k-dependent analytical

formulation first derived by W. Quads, E. Scholl, and M. Rudan [Solid State Electron. 36, 1493

(1993)], and a more exact, numerical method of Y. Wang and K. E Brennan [J. Appl. Phys. 75, 313
(1994)]. Although the completely numerical formulation contains no adjustable parameters and as

such provides a very reliable result, it is highly computationally intensive. Alternatively, the Keldysh

formula, although inherently simple and computationally efficient, fails to include the k dependence
as well as the details of the energy band structure. The k-dependent analytical formulation of Ouade

and co-workers overcomes the limitations of both of these models but at the expense of rome new

parameterization, it is found that the k-dependent analytical method of Ouade and co-workers
produces very similar results to those obtained with the completely numerical model for some

quantities. Specifically, both models predict that the effective threshold for impact ionization in
GaAs and silicon is quite soft, that the majority of ionization events originate from the second

conduction band in both materials, and that the transition rate is k dependent. Therefore, it is

concluded that the k-dependent analytical model can qualitatively reproduce results similar to those
obtained with the numerical model yet with far greater computational efficiency. Nevertheless, there

exist some important drawbacks to the k-dependent analytical model of Ouade and co-workers:

These are that it does not accurately reproduce the quantum yield data for bulk silicon, it requires

determination of a new parameter, related physically to the overlap integrals of the Bloch state
which can only be adjusted by comparison to experiment, and fails to account for any wave-vector

,. dependence of the overlap integrals. As such the transition rate may be overestimated st those points
for which "near vertical," small change in It, transitions occur.

I. INTRODUCTION

The theoretica]studyof interbandimpact ionizationhas

been greatlyaidedby the adventof numericalmethods.Ow-

ing to the complexity of the energy band structure at high

energies, at which impact ionization is initiated, as well as

the complicated caixier-phonon scattering mechanisms, sim-

plified analytical formulations, such as the early theories of
Shockley, t Wolff, 2 and Baraff 3 have limited validity. Nu-

merical models for calculating the ionization rate were then
advanced based on the Monte Carlo method; 'U however,

these approaches utilized parabolic or nonparabolic analyti-
cal energy bands which are of questionable validity at high

carrier energies. The full details of the energy band structure
were first accounted for in the Monte Carlo model of

Shichijo and Hess. 6 In their model the dynamics of the elec-
trons in bulk GaAs were simulated within the first conduc-

tion band, calculated based on an empirical pseudopotential

model. Later, Fischetti and Laux 7 developed a more ad-

vanced Monte Carlo simulator for studying impact ionization

which improved the numerical accuracy as well as incorpo-

rated transport within higher conduction bands.

in order to calculate the overall impact ionization rate

using the Monte Carlo technique, it is necessary to formulate where

an expression for the impact ionization transition rate. This

formulation is then incorporated into the Monte Carlo simu-
lator and is treated as an additional scattering mechanism. An

impact-ionization event is chosen stochastically in the usual

way s through the use of a random number based on the rela-

tive magnitude of the ionization transition rate compared to

competing phonon scattering events. Although there has

been recent work on formulating the ionization transition

rate using a higher-order quantum-mechanical perturbation
theory expansion, _n the impact-ionization transition rate is

more typically determined from use of Fermi's golden rule.

Fermi's golden rule can be expressed ash

f
where dS! represents integration over all the final states, El

and El are the energies of the initial and final states, respec-
tively, Ak is the momentum change during the interaction.

The matrix element M in Eq. (1) is formed using both the

direct M a,and exchange M e terms following Ridley t2 as

IMI2--IM,12+ IMJ2+ IM,-M.I_. (2)
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e2 7(k, ,kl)/(k2,k_)
" Md=cV Ik;_kji2+k2 '

(3)
e 2 l(k, ,k_)l(k2,k'l)

M''_V Ik_- kll2+ k2

In F.q. (3), kl ,k_ are the wave vectors of the incident elec-
tron before and after the interaction, k i, k_ represent the

states of the secondary electron-hole pair after the collision,

k is the static screening factor, and • is the electronic charge;

V is the crystal volume, and • is the dielectric function.

Quantities i(k I ,k_),l(k2,k_),l(kl ,k_),l(kak'l) are overlap
integrals, j2 Following Ridley, 12 the term [M_-MeJ 2 is ne-

glected and the direct and the exchange terms are assumed to

be equal.
In most previous Monte Carlo simulations (e.g., Refs. 6

and 13) the impact-ionization transition rate is calculated us-

ing the Keldysh formula, j4 which can be obtained from Eq.

(1) by adopting several simplifying assumptions: These are
that the transition is calculated assuming a direct semicon-

ductor with parabolic bands for all of the carriers, the overlap

integrals are considered to be constant and the denominator
in the matrix element in Eq. (3) is also taken as a constant

with thresholds values of kl ,k'l. This yields the very well-

known quadratic dependence of the transition rate Wti on the

energy E of the initiating particle, usually expressed as

[E-Eth_ 2

where E_ is the threshold energy and W(E_) is the total

phonon scattering rate at threshold. Eth and the prefactor p

cannot generally be determined from first principles; instead,
they are determined through comparison of the calculations

to experimental data. Aside from this obvious limitation of

the Keldysh formula, the neglect of an accurate accounting

of the high-energy region of the band structure also results in

the failure to properly assess the k dependence of the ioni_a-
tion transition rate itself. Recent theoretical studies have in-

dicated that there is a significant deviation in the ionization

uansition rate with rest, ca to the initiating carrier's k vector
in different materials, ts'i6

Several alternative approaches to the Keldysh formula

for calculating the interband impact ionization rate have been

recently presented} 5-21 In each of these methods, the inter-

band impact-ionization transition rate is evaluated numeri-

cally and can be then incorporated into an ensemble Monte
Carlo calculation. Although these approaches presently offer

• far more accurate treatment of impact ionization than the

Keldysh formula, they require extensive numerical computa-
tion. In the approach adopted by Wang and Brennan 15'!6 the

transition rate is determined directly from Ferret's golden

rule by numerically integrating Eq. (1) st different k points
within ,he first Brillouin zone. Their analysis includes the

direct calculation of the overlap integrals from the numeri-

cally generated wave functions using a k-p method. The
transition rate is evaluated by integrating over several mil-

lion final states directly evaluating the overlap integrals in

each case. This is particularly computationally intensive
since the overlap integrals must be evaluated for each final

state. Sano and Yoshii 17 have used a less computationally

intensive scheme. In their method, the three-dimensional k

space incorporating the reduced zone is partitioned into
small cubes. The matrix elements within each cube are as-

sumed to be equal alleviating the need to evaluate the over-

lap integrals for each possible state. In this way, the number

of computations can be greatly ioduced at the expense of

increased memory r_quirements. However, we have found

that the overlap integrals vary in • nonpredictive manner

from point to point in our k.p calculations and cannot gen-

erally be assumed to be the same even for at•tea very close in

k space. For this reason and memory storage limitations, in

the model of Wang and Brennan Is't6 the overlap integrals are

evaluated for every final state. Nevertheless, all of the nu-

merical approaches indicate that the transition rate is depen-

dent on the initiating electron wave vector.

Recently, another analytical treatment of expression (1),
which also includes the k-vector dependence of the impact-

ionization transition rate, was presented by Quade, Scholl,

and Rudan. 22 They calculated the impact-ionization transi-

tion rate for the general case of an arbitrarily shaped energy

band for the impact-ionizing conduction electron, and three

anisotropic parabolic bands for the final states with their ex-

trema located at different points in the k-vector space. The

assumption of the parabolic energy bands for the final states

is acceptable since the final states are generally at low energy

near the band minimum where the parabolic approximation

is typically good. Other approximations used in the deriva-

tion include nondegeneracy and a constant value for the

overlap integrals. Although the formulation developed by
Quade and co-workers 72 contains some parametefization due

to the fact that the overlap integrals are not evaluated but are

assumed to be constant parameters, it offers a far more corn-

•putationally efficient means of evaluating the ionization tran-
' sition rate with the inclusion of the k dependence than the

numerical method of Wang and Brennan} s'16 Subsequently,

it is of interest to examine how the k-dependent, analytical

model of Quade and co-workers 22compares to the numerical

model of Wang and Brennan. is't6

In this article, we incorporate the formulation of the

impact-ionization transition rate of Quade and co-workers 7"2
within an ensemble Monte Carlo simulator to determine the

electron impact-ionization rate in bulk silicon and GaAs. The

impact-ionization rate calculated in this way is then com-

pared to experimental data as well as calculations made in an
otherwise identical Monte Carlo simulator using the Keldysh

formula and the direct, k-dependent Iransition rate. The na-

ture of the ionization rate is further probed using the Quade

and co-workers' model to determine if it yields similar physi-

eal results to that of the direct, numerical model. Specifically,
the transition rate within each band is calculated and the

percentage of ionization events originating from each con-

duction band is determined. The number density distributions

and the quantum yield as a function of energy are determined

and compared between the different theoretical models as
well. in Sec. I1 the details of the theoretical models are re-

viewed. The calculated results are presented in Sec. III and
conclusions are drawn in Sec. IV.

J. Appl.Phys.. Vol. 76, No. 6, 15 September1994 Kolniket al. 3543



II. MODELDESCRIPTION

The total impact-ionization rate as a function of inverse

electric field is calculated using an ensemble Monte Carlo

simulation, based on the original work of Shichijo and Hess. 6

The details of the simulator have been extensively described
elsewhere; Is't6 therefore, only the main features are outlined
here. The simulation includes the full details of the first and

second conduction bands for silicon or gallium arsenide. The

scattering rate in either case is determined nsinlLthe im-
proved phonon scattering technique of Chang et aL" and the

improved band-structure interpolation technique of Fischetti
and/.aux. 7 The total phonon scattering rate is determined in

the following way. Within the low-energy region, the scatter-

ing rate is calculated from Fermi' s golden rule for all the
relevant mechanisms present. 24 Within the high-energy

range, deformation potential scattering is assumed to be the

dominant scattering mechanism. The scattering rate in this

region is obtained by integrating over the final density of
states, calculated from the numerically generated band struc-

tures, including collision broadening of the final state. The

deformation potential is assumed constant and is selected to

match the scattering rate calculated from Fermi's golden rule

st a low specific energy, lnterband electronic transitions are

enabled via the action of the deformation potential scattering

as described in Ref. 15. The actual scattering rates used in

these calculations have been published previously in Ref. 15/
for silicon and Ref. 16 for GaAs.

The impact-ionization transition rate is formulated in

three different ways and is then !ncorporated into the Monte
Carlo simulator described above. The different transitiofi rate

formulations used are a direct, numerical method previously

described in detail in Refs. 15 and 16, the Keldysh formula
described in detail in Refs. 6 and 7, and a new k-dependent

analytical formulation derived by Quads and co-workers 22
which is summarized below.

The k-dependent analytical formulation of the impact-
ionization transition rate, hereafter referred to as the Quade

formula, predicts the ionization transition rate for an initiat-
ing electron of wave vector k_, colliding with inother elec-
tron in the valence band, to be22

W,(kl)o,p,7 = d_ W,(K],f).,B.7_g(kt)-_], (5)

where

7 -gr,

alibi "Fai Yi "1"_i Yi

' ,(8)

g(ki)=_ Eo+ --aj+ _81(Z"i-ZPt)2"'

+ Y. v,(k , (9)
I-I

Ks't= )'_(kL"l-gY'i) aj+_gt (Z"'i-Zl£1) ' (10)

and

_j,. ]( ,/(X2_ _)2+ 4K_XZ_ (k2_ _)]. (1])

In the above set of equations, a,/9, and "yrepresent a para-
bolic valence band and two possibly diffe_rentparabolic con-
duction bands for the final states of the hole and electrons

after the impact ionization event, respectively. The aniso-

tropic bands are parametrized by ratios of effective masses

al=ma line.i, Bj=ms Iml£1, Y_=ma Im_.i, where i labels

the Cartesian coordinate, and the extremal points of each

band are positioned at Zo, Z B, Z_,; m s is an isotropic effec-
tive mass of the conduction band for the initiating e_ectron. F

represents the product of the squared overlap integrals and is
taken as constant for each initiating band but may vary be-

tween bands, p stands for the geometrical average of the

quantities p_, /a,2, la_ defined by Eq. (8). The arbitrarily

shaped function E(k t) represents the energy of the initiating

electron, E0 represents the ga]_ plus offsets of the extremal
points of the bands a, ,8, y. k_i=k_-L, where L is a recip-

rocal lattice vector and O is the Heaviside fun_ion. Equation
(5) is derived assuming a static dielectric constant, Although
recent work t7 has shown that.a full wave-vector, frequency-

dependent dielectric function can modify the ionization tran-

sition rate, its incorporation in the Ouade formula would not

lead to an analytical expression. For this reason, a constant
dielectric function is used within the Ousde formulation. To

facilitate comparison of the Quads model to other models, a
constant dielectric function is used within the numerical and

Keldysh formula models as well.

The total impact-ionization scattering rate for the initiat-

ing particle with wave vector kz is calculated taking into

account all of the possible final states within the full Bril-

louin zone. The total impact-ionization transition rate can

then be expressed as

Wu(kt)=_ _ _ Wa(k,),.#,,, (12)
a /I _,

where the summation goes over all the valence bands a end

all possible valleys ,0, _, in the first and second conduction

bands. The summations in F.,q.(12) are taken so as to include

both direct and exchange terms.
The material parameters used in the calculations have

been takim from Refs. 25-28 for silicon and Refs. 29-32 for

gallium arsenide. For the case of the second conduction band

in both materials, the longitudinal m_ and transverse m_ ef-

fective masses for the X valleys have been obtained from the

numerically calculated band structures determined by a k.p

calculation. The longitudinal and transverse masses used for
silicon and gallium araenide in the second conduction band

3544 d. Appl.Phys., Vol. 76, No. 6, 15 September1994 Ko_ik et aL



TABLE l. Eamllieto_uymmetrypoints(_lativ©to thetopof thevuleuce
band,in eV) andvlduetof relativ©¢ffec*iv¢numsesusedinthecalculations
of the Jmpact.JOflizntioatransitionIsle Jnsilk:onand pllium tmenide.

S_iicoe ChdlJumarsenJde

E(ro) 3.42" 1.423b
E(xc,) L12" tJ_g8_
EU-cl) 1.92' 1,706b
£(Xcu) 1.14c 1,973c
E(rso) -0.044' -0.340 b
m,(Xca) 0.19' 0.2_
m,(Xc,) 0.92' 1.98r
m,(Xcu) 0.21c 0.23'

• ml(Xcu) 0.29_ 0,40_
m(Lc_) 0.284" 0.18f
m(l'cl ) 0.067f
.(r,.,) 01 37' 0.45'
m(r'tH) 0.153a . 0.0821
m(rw) 0.234' 0.170 r

"Reference32.
'Rctere_ 30.
"Valuesobtainedfrom the numericallyadculaJed bandslru_ure.
aRcfcrcnce26.
'Reference25.
eReference31.

are reported in Table 1. In the case of L valleys, F valleys,
and all the valence bands, the isotropic effective masses have
been used and their values are also listed in Table I, as well

as the energies of symmetry points relative to the top of the
valence hand.

The interband impact-ionization transition rate calcu-

lated using (he approach based on Ouade and co-workers'

results assuming (hat the overlap integrals are simply unity is

presented in Figs. l(a) and l(b) for the first and second con-
duction bands in silicon, and in Figs. 2(el and 2(I)) for the

first and second conduction bands in gallium arsenide, re-

spectively. Comparison of Figs. 1 and 2 to similar figures

obtained by Wang and Brennan Is't6 using the completely nu-

merical technique in which the overlap integrals are evalu-

ated directly shows good qualitative agreement between the

two approaches. For bulk silicon the primary difference,

aside from (be overall magnitude, is thai (be number of

points for which a nonzero transition rate has been calculated

is higher using (be completely numerical approach. A similar
effect can be seen in the case of the first and second conduc-

tion bands in gallium arsenide. Again notice that there is a
significant difference in the number of nonzero transition rate

points between the two models (data calculated using the

numerical approach can be found in ReL 16) for the first

conduction band; however, the rate from these points is rela-

tively small compared to the competing scattering rates.

Further examination of Figs. I and 2 reveals (bat the

transition is greater for electrons originating from the second
conduction band than from the first conduction band, which

corresponds to the results based on the numerical

calculations, ss'je This is particularly true for GaAs. As is
discussed below, due to the fact that the transition rate is

greatest for the second conduction band, most ionization

events occur from electrons which originate, from within the
second conduction band.

" ,0"f""

| ':0,:I
Ii11111 1 [  11111111 I'o'.

• 1" • ' '°'

FIG. 1: Calculated interbandimpact.ionizationtransitionrate fm the first
m_l secondconductionbandin bulk silicon as a functionof k, andk_ (k, is
fixedat0.0) withinabereducedzoneof Ib¢fuslBri]louinzoneobtained by
the analyticalformulationbased on the Ouade model.Initiatingelectronis
in (a) Ihc firstconductionbandand(b) thesecond_ion band.

IlL RESULTS

The impact-ionization rate as a function of inverse elec-
tric field, calculated using the ensemble Monte Carlo simu-

Ixtion, is presented in Figs. 3 and 4 for silicon and gallium
arsenide, respectively. In each case, the rate is calculated

using the Keldysh formula, (be k-dependent numerical for-

mulation, and the Quade formula for the impact-ionization

transition rate. The experimentally obtained data are also

• shown in both figures. The experimental results of van Over-
atraeten and DeMan, _ Grant, ). and Woods, Johnson, and

Lambert 3s for electron-initiated impact ionization in silicon

are plotted in Fig. 3. These data comprise a representative set

of data which cover the full range of experimental measure-

merits for electron-impact ionization in silicon. The experi-
mental measurements of Bulman et al. _ are plotted for gal-

lium arsenide in Fig. 4.
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FIG. 3. Calculated and ezpet_ental results for Sba e|ectmn JmpecJ-

ionization coefficients in bulk silicon plotted as • funcfio_ of inverse electric

field. Results of the mlcu|afions of the Joni_fion mia including the Keldysh
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FIG. 2. Calculated inlerhand impact-ionization transition rate for the first

and second conduction band in bulk GaAs as a function of k, and k? (k, is
fixed at 0.0) within the reduced zone of the first Brillouin zone obttmed by

the analytical formulation based on the Qcade model. Initiating electron is

in (a) the first conduction band and (b) the second conduction band.

In the case of •ilicon, good agreement with the data of

Woods and co.workers is obtained for the k-dependent nu-

merical formulation, as was also reported previously, ss No

• djnst•ble parameters for the impact-ionization transition

rate are used in this ca_e. Very similar re,sults can be obtained

using the Quade formulation by choosing the values for the

parameter F in Eq. (7) equal to 0.24 for both the first and

second conduction bands. F corresponds to an "average"

value of the squared overlap integrals. The squared overlap

integrals always have value between 0 and 1. In the analyti-

cal model of Ouade and co-workers_ and that presented

here, F is treated as a parameter which is chosen so as to

yield good agreement wi_ experiment. Best agreement with

the low range of silicon experimental data occurs for

F= 0.24 given the phonon scattering rate adopted here. The

calculated silicon impact-ionization rate obtained using the

formula, k-dependent numerkal, and (}uade model are presented. Experi-

menial retails of J_b. 33, 34, and 35 are tlso shown. FI and F2 represent

values of the averaged _lnred overlap in_lp'als ned in the Ouede

model for bands ! and 2, respectively.

Keldysh formula with p=0.02 and E_=1.13 eV is also

shown in Fig. 3. A value of p of about 0.02 is typically

considered to correspond to • soft threshold. In contrast to

both k-dependent models, better agreement with the h/gher

range of experimental measurements can be seen for this

particular choice of threshold and p; however, a different
choice of the parameter F' within the Quads formulation

would also provide a better fit to the higher range of experi-
mental data as well.

In gallium arsenide the dependence of the impact-

ionization rate on the inverse electric field obtained using the
numerical, the Quade models with F=0.05 and 0.005 for

the first and second conduction band, respectively, and the

Keldysh formula with p=0.02, Em=l.85 eV for the
impact-ionization transition rate, shows in all three cases

hirly good agreement with the experimentally measured data

10'

1o'

a U a 11.11 4

1UWo4trlc Fkdd ( I0 4 era/V)

FIG. 4. CaicuhJiad itad experimental nmolts for the electron impact.

kmization coefficients in bulk gallium nmenide plotted as s function of

inverse electric field, using the Keldysh formula, k-dependent numerical,

md Quede model. Experimental remits thown are those of Bulman.tn al.

Ote[. 36). F1 and F2 represent the values of the avenged squared overlap

latellrais ned in the £)_ model for bm_s 1 and 2, respectively.
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FIG. 5. HistOlFam showing the percentage of ionization events originating

from the first and w.coad conduction bands in silicon for (a) the k-depench:nt
itumcr_dl| focmulation and (b) ;he Ouade formulation.

(Fig. 4). It should be noted that in the case of the approach
based on the Quack formula, the selection of the fitting factor

F for the first conduction band essentially does not play any

role due to the negligible impact-ionization transition rate of
the electrons in the first conduction band with respect to the
second conduction hand.

The percentage of ionization events originating from the
first and the second conduction band in bulk silicon as a

function of applied electric field is plotted in Fig. 5(a) for the

numerical model and in Fig. 5(b) for the model based on the

Quack formula. At the applied electric fields investigated

here the impact-ionization events originate predominantly in
the second band in both cases. Therefore, on the basis of

these reports, it appears that most electron-initiated ioniza-

tion events originate from electrons within the second con-
duction band. The number of events originating in the first

conduction band is found to be higher for the numerical

model than for the model using the Quack formula at the

field of 250 kV/crn, while for higher fields this difference

vanishes. This slightly different behavior of the two models

at low fields is caused by the fact that the threshold energy

for impact ionization is about 1.32 eV in the Quack model

for the particle originating in the first conduction band and

2.1) eV for the second conduction band, while for the nu-

merical model the threshold energy value is not well defined.

O.03

O.O2'5

002

O015

0.01

O.OO5

0
O 0,5 1 1.6 2 2.5 3 _L6 4 4.5

r=mtw(o_

FIG. 6. The ¢iu_,(_ numbu density function in silicon, defined as the

pmd,_ of tl_ deusioy-of-ststes functioqn and the elec/ron distribution func-

i _ am applied electric field of 500 kVlcm, calculated using the

k-depcudent nmuerical model and d_ Qwmdc model.

Instead, in the numerical mode] ionization is possible at all

states with energy greater than the band gap which are found

to satisfy the momentum and energy conservation conditions.
Therefor,.;, there is no sharp threshold energy, other than the

band gap, below which ionization cannot occur and above
which ionization does occur. Thus, the contribution of the

first conduction band at low fields can be expected to be

higher when the numerical model is used.

The effect of the second conduction band on the impact-

ionization rate in gallium arsenide is even" more important
than in silicon. The impact-ionization transition rate for elec-
trons in the first conduction band is much lower than the rate

within the second conduction band in both models as can be

seen from Figs. 2(a) and 2(!)) and from Ref. 16. As a result,

/virtually all the electrons which impact ionize originate
within the second conduction band. The effect is even stron-

ger using the Quack formulation than the numerical formu-
lation. Though the value of F used in the analytical formu-

lation is unknown a priori, i.e., without first comparing the

calculations to experiment, it should be noted that F can

never be greater than 1. Therefore, given that the transition
rate of electrons within the first conduction band is several

orders of magnitude lower than from the second conduction

band with F- 1, as shown by Figs. 2(a) and 2(b), it is clear

that the first conduction band plays no significant role in

impact ionization in bulk GaAs for reasonable values of F.

Hence, in either the numerical or analytical k-dependent

models the predominant source of ionizing electrons in bulk
GaPs is carriers within the second conduction band.

The electron number density function defined as the

density-of-states function multiplied by the electron distribu-

tion function, is shown in Fig. 6 for silicon at an applied
electric field of 500 kV/cm for both the numerical

k-dependent model and the Quack model. In both cases, the

number of electrons which survive to bigh energies is rela-

tively high. The second peak in each of the figures corre-

sponds to the electron population in the second conduction

band and is slightly larger for the Quack model. Both models

essentially confirm previous results 37-39 that the threshold in
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silicon is exceedingly soft and that the electrons can reach

energies substantially higher than the band gap before they

impact ionize.

The electron number density functions in gallium, ars-

enide are plotted in Fig. 7 calculated using the k-dependent

numerical and Quade models for the applied electric field of
500 kV/cm. In both cases the distribution functions are simi-..

lar and the effect of the second conduction band (the second

peak at higher energies) is again slightly larger in the Quade
model. Notice that the number distribution remains substan-

tially large at high carrier energies indicating an exceedingly

soft effective threshold for impact ionization in GaAs. Again

these results are consistent with previously reported
observations, z9

The energy-dependent impact-ionization transition rate,

derived from the k-dependent rate in a manner described in

Ref. 15, is plotted in Fig. 8 for the numerical k-dependent
formulation and the Ouade formula, respectively, for silicon.
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FIG. 8. Calculatedimpact.ionhationmmsitionratein siliconu • function
of elee/roneoergyme.uurec_from the condu_ion-band minimum.The
energy-dependentrateis calculatedby performingmfurther integrationof _
thek-dependen!rate followingtheapproachexplainedin ReL 15 fm Ihe
mmmerical-nOQuademodels;theresultsof Kane(Ref.40) andCarlkr_ aL
(Ref. 41) andKamakumet al. (Ref. 19) arealsoshown.

FIG. 9. Calculatedimpsc/.ionLzaliontransitionroteingalliumaraenideasa
functionof eleclnxtmL.rgymeuuradfrom lhe cmxluction-bandminimum
ruing the k-dependentmanedcalmodel and the Qude model. The enemy-
dependentrateiscalculatedby performinga further/ntegration ofthe
k.dependcntratefollowingtheq_xonci_explainedin Ref. IS, The energy-
depemlenlrate _ined by Stobbeand eo-wmkers(ReL 21) is also in-
cluded.

The results of Kane, 4° Knmakura et aL, 19 and the recently

published ionization transition rate of Cartier el al. 41 deter-

mined from a comparison of Monte Carlo simulations and

soft-x-ray photoemission spectroscopy (XPS) measurements

are shown as well. The numerically calculated transition rate

is almost identical with that of Cartier et al. up to an energy
of 4 eV, and seems to be closer to the results of Kane in the

high-energy region. Recently, also, Kunikiyo e/al. ts have

performed similar calculations of the silicon interband
impact-ionization transition rate. Their calculations are in ex-

cellent agreement as well with the transition rate of Cartier
et al. 4t The transition rate obtained on the basis of the Quade

formula agrees well with the numerical model between 2 and

4 eV, while a lower rate is predicted in the low- and high-

energy regions.

The energy-dependent impact-ionization transition rate

for gallium arsenide, calculated using the numerical ap-
proach of Wang and Brennan t6 and the Ouade formula, re-

spectively, are shown in Fig. 9. Stobbe and co-workers _j

have also recently calculated the impact-ionization transition

rate in bulk GaPs. Their calculations, based on the fitting

formula quoted in Ref. 21, are included in Fig. 9 for com-

parison. Inspection of Fig. 9 shows that the maxima of the
transition rate, based on both the numerical model of Wang
and Brennan t6 and the Ouade model, occurs near 3 eV in

GaPs. The maximum region is more pronounced for the
Ouade formulation than in the case of Wang and Brennan's

numerical model. The origin of the maximum can be possi-

bly understood within the analytical formulation, since the

transition rate involving each valley can be individually
evaluated. The maximum in the transition rate is due to the

collision of an electron within the second conduction band

with an electron in the heavy-hole band, after which the elec-

trons occupy Stiles either both in the r' valley (the lower

peak below 3.0 eV) or one is in the F valley and the other in

the L valley (the higher peak close to 3.4 eV). In both cases,

a transition of the initiating electron from the second conduc-
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tion band to the first one with only a slight change of the k

vector (s near-vertical transition, as explained in Ref. 42)

contributes to the final values of the transition rate. Near-

vertical transitions have a significantly greater rate owing to

the fact that the denominator in Eq. (3) becomes very small
under these conditions. 42 This region may be somewhat un-

realistically pronounced in the Quade formulation due to the
fact that the value of the overlap integrals is taken as an

averaged constant. The actual values of the overlap integrals

in this region may be quite small thereby reducing the rate if
calculated. It is much more difficult to isolate the physical

origin of the maximum in the numerical model. In this case,
a similar ramification would be questionable, mainly due to

the uncertainty in how the "valleys" are defined in the real

band structure. Inspection of Fig. 9 also shows that the study

of Stobbe and co-workers 21predicts a higher ionization tran-

sition rate from the results presented here. The cause of this

discrepancy may be due to the inclusion of a q-dependent
dielectric function in Stobbe and co-worken' formulation as

well as differences in the energy band structure utilized in
the two calculations. In Stobbe and co-workers' work the

band structure is calculated using an empirical pseudopoten-

tin] method in contrast to the k.p method adopted in the

present work.
To further investigate the impact-ionization transition

rate formulations, the energy dependence of the quantum

yield was also calculated for both the numerical and Quade

models. The quantum yield is defined as the average number

of impact-ionization events caused by a high-energy injected

electron until its kinetic energy relaxes below the ionization

threshold through scattering and/or ionization events. While

the impact-ionization coefficient strongly depends on the en-

ergy distribution function and therefore mainly on the inelas-

tic electron-phonon scattering rate, the quantum yield is al-
most a linear function of the ratio of the ionization transition

rate to the electron-phonon scattering rate. 4_ The quantum

yield provides a useful means of assessing the relative hard-
ness or softness of the impact-ionization threshold and en-

ables an additional, independent evaluation of the appropri-
ateness of the model used.

To the authors' knowledge, the only presently existing

experimentally based data for the quantum yield apply to
bulk silicon. Calculations of the quantum yield in silicon are

presented in Fig. 10 using both the numerical and Quade
models. The data of Cartier et al., 41 derived from a compari-

son of Monte Carlo simulations and XPS measurements,

which were shown to be in good agreement with other

measurements,'*: are also plotted in Fig. 10 for comparison.

While fairly good agreement over the full energy range he-
tween the model based on the numerically calculated ioniza-

tion rate and the data from Ref. 41 can be teen, the Ouade

formula predicts a quantum yield which is substantially
lower in the low-energy region. Nevertheless, the Quade for-

mula results correspond fairly well to the other data above
2.5 eV. These results can he understood on the basis of the

threshold energy for impact ionization. In the case of the
_ade formula the threshold energy is well defined and is

substantially higher than the value of the gap. Subsequently

the ionization-transition rate in this region is lower for the

,.oo[s,,ico.-t /
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FIO. 10. Cskulatedquantumyieldasa functiooof ¢lecuonenergyin 8i|i-
coo mc4umred_ the conduction-bandminimum,obtainedmini the
k-dependentn,mcrk4dmodelandtheOuKI¢model.Resultsof Cartierel a/.
0tel. 41) m tim _o, tvn.

Quade model, as can he seen in Fig. 8, which results in a

lower quantum yield. Conversely, in the numerical model,
the effective threshold is simply the energy gap and subse-

quently ionization events can possibly occur at low energies

in this model leading to a higher quantum yield.

Although no experimental data for bulk GaPs are pres-

ently available, it is nevertheless instructive to compare the
calculated quantum yield dependencies on energy using the
numerical and Ouade models. The calculated quantum yield

venus electron energy in GaPs using the numerical and

Ouade models is shown in Fig. 11. Comparison of the calcu-
lations reveals good correspondence between these two mod-

els in the energy range from 2.5 to 3.5 eV, while at higher

energies the Quade model [with the particular choice of the

prefactor F appearing in Eq. (7), as described above] predicts

• a lower quantum yield than the numerical model. At lower

energies the Quade model predicts a higher quantum yield
than the numerical model. This discrepancy can be under-

stood as follows. An identical phonon scattering rate is used

in both models of the ionization rate. As stated by Cartier

el al. 4t the quantum yield depends linearly upon the ratio of

the impact-ionization transition rate to the phonon scattering

10o
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10_

. _: Numm'leal

model
2 3 4

r,woy Iov)

FIG.11. C3tlculatgdquantumyield u • function of ekctron energyin gtl-
Uum•r_nid¢ measuredfrom theoonduclio_-bandminimum,obtainedusing
the k-dependentnumericalmodel and the Outdo model.
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rate. Subsequently, the quantum yield within each model,

given that the scattering rates are identical, depends then

simply upon the ratio of the transition rates and will follow

the same trends as shown in Fig. 9.

The value of the overlap integrals used in the evaluation

of the transition rate given by Eqs. (2) and (3) is evaluated
directly in the numerical approach. As mentioned above, this

requires extensive numerical computation. By approximating
these overlap integrals as a constant, the factor F in Eq. (7),

a new single parameter is introduced greatly reducing the

numerical complexity required to evaluate the transition rate

but at the expense of a new unknown parameter, in the cal-

culations presented above, F is adjusted such that the ana-

lytical model yields satisfactory agreement with the experi-
mental data. To check to see if the determined values of F

• re reasonable, it is useful to compare these values to those

determined using the sum rule quoted by Ridiey. 12Using the

sum rule, the squared overlap integral between the first con-

duction band and the heavy-hole band in gallium at•snide is

determined to be 0.38. More elaborate calculations made by

Butt e! 0[. 43.44 using wave functions obtained from a k.p
calculation show that this value is --10 -2 , which is in fair

agreement with the results presented here for GaAs,
F=0.005 for the second conduction band. In the case of

silicon, the value F= 0.24 obtained for the impact ionization

originating in both the first and second conduction bands, is

higher than the value of F"-0.05, '.5 or F=0.01, quoted in

Refs. 46 and 47, obtained by theoretical evaluations. It

should be noted, though, that a discrepancy between the ex-

perimentally determined recombination coefficients for Au-

ger recombination, and the theoretically obtained ones,

whit_h also contain the same overlap integrals, was observed

in bulk silicon. This discrepancy is thought to be possibly

due to an underestimation of the overlap integrals by roughly

an order of magnitude. 4s

IV. CONCLUSIONS

in this article the electron interband impact-ionization

rate calculated by an ensemble Monte Carlo simulation has

been presented for both bulk silicon and gallium arsenide

with the expressed purpose of comparing different formula-

tions of the transition rate. Specifically, three different treat-
ments of the transition rate are examined: the traditional

Keldysh formula, a new k-dependent analytical formulation
first derived by Ouade and co-workers, 22 and a more ex•ct,

numerical method of Wang and Brennan. as're The numerical

method of Wang and Brennan js'16 contains no readily •djust-

able parameters and is similar to other numerical techniques

that are currently attaining prominence. The numerical tech-

nique thus serves as a standard to which the Quads result has

been compared. Unfortunately, the completely numerical

technique, although fundamentally based, requires extensive

numerical computation making it somewhat unattractive. As

is well known, the Keldysh formula, although commonly

used in Monte Carlo calculations of the impact-ionization

rate owing to its relative simplicity and computational effi-

ciency, suffers from several limitations as well. Chief among

these is the fact that it is derived assuming parabolic energy

bands for all of the participating carriers, and includes no k

dependence in the rate. Additionally, due to its reliance on

two adjustable parameters, more than one set of parameters

can be used within the Keldysh formula to produce Ntisfac-
tory agreement with experiment. As a result, the Keldysh

formula cannot by itself predict whether a material has a soft
or hard ionization threshold. Therefore, there is a need to

develop a more computatinnaily efficient transition rate for-

mulation than the direct, numerical technique, yet retain the

k dependence and details of the band structure in its formu-

lation, in this way, the physical nature Of the ionization pro-

cuss can be preserved (soft or hard threshold, etc.) while

maintaining computational efficiency. The Ouade formula,

although it contains one adjustable paramour corresponding
physically to the squared overlap integrals of the periodic

parts of the Bioch functions, includes the full details of the

band structure for the initiating carder. In this article, we

have provided the first compari-qon of this formula to the

numerical technique to determine if this sp_'_oach yields

qualitatively similar results while providing far better com-

putational efficiency.

The calculations presented here show that the model

based on the (_ade formulation produces similar results to

the completely numerical calculations for some quantities,

primarily the ionization rate as • function of field. In con-

trast, to the Keldysh formula, where no k-vector dependence

of the impact-ionization transition rate is included, the tran-

sition rate in the k-dependent numerical and analytical

(Ouade formula) cases is shown to be strongly dependent on

the initiating electron k vector. It is also shown that both

k-dependent models wedict that the second conduction band

dominates the ionization process in GcAs and silicon; how-

ever, the quantum yield predicted using the analytical model

of Qusde and co-workers _' does not agree closely with the

available experimentally derived data of Cartier et el." or

that predicted using the numerical model of Wang and
Brennan. is't6 As such the (}uade formula, although far more

complete than the Keldysh formula, may not be a completely

reliable replacement for the numerical models in many situ-
ations.

Further comparison of the Ouade and numerical models

Rye•Is that they predict that the effective threshold for im-

pact ionization is relatively soft, implying that the carders

drift to substantially high energies before suffering an ioniza-

tion event. It is shown that the average energy of the elec-

trons is high when compared to that expected for a hard

Ihreshold model. Thus, many of the Important qualitative re-

suits obtained by adopting the computationally intensive nu-

merical approach, i.e., the dominance of the second conduc-
tion band, the nature of the ionization threshold, and the

importance of the It dependence, tan be recovered if the

analytical k-dependent formulation of Quads and
co-workers 22 is used. Use of the Quade formula may not

always be fully justifiable, however, since it contains some

ad hoc parametrization which cannot be ascertained from

first principles and it apparently does not reproduce the quan-

tum yield data, Additionally, it is possible that the Ouade

formula may overestimate the impact.ionization transition
rate at those points in the k space where near-vertical transi-
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lions are allowed due Io the failure to include the actual

values of the overlap integrals for these transitions.
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